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ABSTRACT

We investigate the problem of constructing fountain codes for

distributed storage in sensor networks. Specifically, we assume that

there are n storage nodes with limited memory and k < n data nodes

generating the data by sensing the environment. We want a data col-

lector who can appear anywhere in the network, to query any k + ε
storage nodes and be able to retrieve almost all the data packets. We

demonstrate how it is possible to solve this problem by using a spe-

cific kind of fountain code that requires only linear communication

and decoding complexity. Further, for a grid topology, we propose

a randomized algorithm that constructs the fountain code over a net-

work using only geographical knowledge and local decisions. A key

step in the analysis of our algorithm is a novel result concerning ran-

dom walks on finite grids with traps.

1. INTRODUCTION

In this paper we address the problem of creating a robust, distributed

network memory hence providing fast and reliable access to dis-

tributed data using unreliable sensor nodes. The popular approach to

retrieving data in wireless sensor networks is for the data collector to

query for the data from the sensor nodes of interest. The desired data

is then routed from the source nodes to the data collector. This may

be categorized as a “pull-based” strategy. In certain scenarios of in-

terest, a pull-based approach at query time may have limitations. Pri-

marily, there can potentially be a large latency in getting the desired

data out of a multitude of source nodes scattered randomly across the

network due to the multi-hop routing phase following the query. In

addition, storage nodes may fail and redundancy might be necessary

to ensure that important data will be preserved. There is a tradeoff

between the work performed at the time that the data is generated

relative to the work performed at query time. In general, processing

done at query time introduces latency and unreliability that may not

be acceptable for certain applications. This work is accordingly mo-

tivated at trying to reduce latency and unreliability between query

time and the time that the desired data is made available to the data

collector.

Motivated by “smart dust” sensor networks [9], we consider

a large scale network with unreliable nodes that have constrained

communication, computation, and storage capabilities. Given k data

nodes sensing some physical quantity of interest, we would like to

use n unreliable storage nodes as a robust distributed network mem-

ory. The key issue is to introduce redundancy for reliability while at

the same time minimize the required communication cost.
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1.1. Problem Description

We assume that there are k data-generating nodes that are measuring

a physical quantity of interest. Without loss of generality, we will

assume that each data node generates one data packet of significant

size containing the measurements over some time interval.

In our problem setting, we will assume that the data packets are

independent. In most interesting sensing scenarios the data will be

highly correlated and our scheme can be combined with distributed

source coding to compress correlated data. Essentially, after dis-

tributed compression, the large correlated data packets can be re-

placed by smaller packets that are independent and have the theoret-

ically smallest possible size, equal to the joint entropy of the physical

sources.

Further, assume we have n > k storage nodes that will act as

storage and relay devices. Sensor nodes have limited memory and

we model that by assuming that each storage node can store only one

data packet (or a combination having the same number of bits as a

data packet). This is required for the scalability of the network.

The ratio k/n < 1 is assumed fixed as k and n scale. For exam-

ple we can assume that some fixed ratio (for example 10%) of nodes

in a sensor network are measuring while the rest are used as storage

and relay devices.

We want to add redundancy and store the information contained

in the k data packets in the n storage nodes. As there are k data

packets of interest, and each storage node can store no more than 1
data packets worth of bits, it is clear that one has to query at least k
storage nodes to completely recover the original data. We will refer

to this procedure of storing the k data packets in n storage nodes and

adding redundancy as a distributed networked storage strategy.

1.2. Distributed Networked Storage

The problem we address in this paper is to find good networked stor-

age strategies for answering approximate data collection queries. In

particular, we want to ensure that a data collector who obtains ac-

cess to (queries) any (1 + ε)k storage nodes is be able to recover at

least (1 − δ)k original data packets. We will use linear codes over

GF (2) for distributed networked storage. Specifically, each data

node will be routing its data packet to d randomly selected storage

nodes who will be storing the bitwise XOR of what they receive.

This has to happen before the data collection can take place and we

will therefore refer to this routing of data packets to storage nodes

as pre-routing. A data collector who queries k(1 + ε) storage nodes

receives k(1 + ε) linear equations over GF (2) and these can be

hopefully used to recover k(1−δ) original data packets. We assume

that the data collector has enough memory and processing power to

store the equations and run the belief propagation algorithm (as will

be explained in a subsequent section) to recover the original data.
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Any linear networked storage strategy can be compactly repre-

sented as s = mG where s is an 1 × n vector of stored data, m is

1× k data vector and G is a k × n matrix with non-zero entries cor-

responding to the data packets that have been routed and combined

in the storage nodes. Therefore, the desired properties of linear net-

worked storage strategies can be translated into desired properties

for the generator matrix G of a linear code.

Standard erasure codes can therefore be used for distributed net-

worked storage in sensor networks. For example, Reed-Solomon

codes or random linear codes [1] will produce storage strategies with

δ = 0 and ε = 0.

However, the key issue is that both the data and the storage nodes

are distributed, and the question we explore is how to build codes

that are suitable for distributed network constructions. The fact that

the code is created over a network introduces new requirements and

constraints and therefore requires novel code design. In particular,

every non-zero element in the generator matrix of the code, corre-

sponds to a data packet that has to be pre-routed from a data node

to a storage node. In fact, the communication required to construct

the networked storage code is proportional to the pre-routing degree
d of each data node, that is, the number of storage nodes that each

data node has to pre-route its packet to. Therefore, one desired prop-

erty is that the codes used for distributed networked storage have as

sparse generator matrices as possible to minimize the required com-

munication.

The second desired property is random and independent con-

struction. Any requirement on the structure of the generator matrix

would require data nodes to coordinate so that they route the correct

packets to the appropriate storage nodes. We would ideally like to

have each data node choosing which storage nodes to contact ran-

domly and independently, or equivalently every row of the generator

matrix created independently. This row independence, which we call

“decentralized property”, was proposed in our previous work [3, 4]

and leads to stateless robust randomized algorithms for distributed

networked storage.

1.3. Previous work and Contributions

The main question we address in this paper is related to the spar-

sity of G which is measured by how d can scale as a function of
the network size n so that almost all the data can be recovered. In

our previous work [3, 4] we demonstrated how to solve the (exact)

distributed networked storage problem when the requirement was to
recover all k data packets by querying any k storage nodes1. We

introduced decentralized erasure codes which can be constructed by

having each data node pre-route its data packet to d = Θ(log n)
randomly selected storage nodes and further showed how this loga-

rithmic degree is optimal if each data node is acting randomly and

independently. This however leaves open the question of what can be

possibly achieved when the pre-routing degree is constant (does not

grow with the network size n) if some form of coordination between

the data nodes is allowed.

The main contributions of this paper are the following. We show

that any networked storage strategy (even if data nodes are coordi-

nated by some centralized authority) with constant degrees d will

fail to recover all k data packets with at least a constant probabil-

ity (section 2). Therefore, since recovering all the data packets with

constant degrees is impossible, we relax the problem and investigate

how to recover a linear fraction of the k data packets. We show that

this problem can be solved with constant pre-routing degrees using a

1Which corresponds to setting δ = 0, ε = 0 in our problem setting

specific choice of fountain codes (section 3). The surprising fact that

one can construct such sparse linear equations that can still be used

to recover almost all the data stems from carefully designed degree

distributions [11]. The last part of the paper (section 4) focuses on

grid topologies and proposes a randomized algorithm to create the

fountain codes over the network. A key step in the analysis of our

algorithm is a novel result on the time until a random walk on a grid

is absorbed, when there are randomly scattered traps.

2. LOWER BOUND ON THE ERROR PROBABILITY FOR
CONSTANT DEGREES

As mentioned, any deterministic or randomized linear distributed

networked storage strategy can be described in terms of a linear code

and its generator matrix G. In this section we show that networked

storage strategies with constant pre-routing degrees that do not grow

with n, will fail with at least a constant probability if we require that

δ = 0, ε = 0. Assume that some data node pre-routes its packet to

a constant number of storage nodes. This means that there exists a

row in the generator matrix of the code that has only a constant num-

ber of nonzero elements. The probability that the networked storage

code fails (when δ = 0, ε = 0) is the probability that k randomly

selected storage nodes do not contain enough information to recover

all k data packets. We present the following bound (Proof omitted

due to space constraints):

Proposition 1. For an (n, k) linear code where n = qk, q > 1,
if there exists a row in the generator matrix that has no more than
c constant nonzero elements, the probability that the corresponding
networked storage fails is always larger than ( q−1

q
)c.

3. FOUNTAIN CODES FOR APPROXIMATE DATA
COLLECTION

Proposition 1 demonstrates that if we desire to have constant pre-

routing degrees that do not scale with the network size, it is not

possible reliably to recover all the k data packets by querying any

k storage nodes. Therefore, one natural question to ask is: what is

the best that can be achieved with constant pre-routing degrees. In

this section we show how one can use a fountain code to recover

a constant fraction of the k data packets with pre-routing degrees

which are random but bounded by a constant almost surely. A foun-

tain code [11] is created by a set of k input symbols and a degree

distribution D. Each encoded symbol of a fountain code is created

independently as follows: First, a degree d is sampled from the dis-

tribution D. Then d out of k input symbols are chosen uniformly and

independently (without replacement) and the resulting output sym-

bol is the bitwise XOR of the d selected input symbols. Fountain

codes are decoded by running the belief propagation algorithm and

the key technical challenge is the careful design of the degree distri-

bution D so that this iterative decoding procedure succeeds. The first

fountain codes where invented by Luby and called LT-Codes [10].

The degree distribution used is called the robust soliton distribution

and has logarithmic degree. This would correspond to logarithmic

pre-routing degree for our networked storage problem. Raptor codes

[11] manage to reduce the degrees from logarithmic to constant by

using an appropriate pre-code. This idea cannot be used for our prob-

lem however, since the standard pre-codes do not have sparse and

independent generator matrices. However we can use the LT code

used inside the Raptor codes and still recover a constant fraction of

the original data. Specifically, if we use the degree distribution with
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generating function:

ΩD(x) =
1

µ + 1

(
µx +

x2

1 · 2 +
x3

2 · 3 + · · · (1)

+
xD

(D − 1) · D +
xD+1

D

)
. (2)

where D = �4(1+ ε)/ε� and µ = ε/2+ (ε/2)2 for any ε > 0. then

we can use the following result [11]:

Lemma 1. There exists positive c (depending on ε) such that with
an error probability of at most e−ck any set of (1+ε/2)k+1 output
symbols of the fountain code with parameters (k, ΩD) are sufficient
to recover at least (1 − δ)k input symbols via belief propagation
decoding, where δ = (ε/4)/(1 + ε).

Therefore this fountain code can be used for approximate net-

worked storage if one wants to query (1 + ε/2)k + 1 storage nodes

and recover (1 − (ε/4)/(1 + ε))k data nodes. Each storage node

can independently sample its degree d from the given distribution

ΩD and then it needs to request d data packets randomly and inde-
pendently. Notice that since d is always smaller than the constant

D = �4(1+ε)/ε� and therefore the total number of pre-routed mes-

sages per data node is bounded by a constant almost surely (since

k/n is fixed). A data collector can collect any (1+ε/2)k+1 encoded

packets and run the belief propagation decoder which will require a

number of iterations proportional to the average degree of ΩD . Since

this average is Ed ≈ ln(1/ε) [11], the decoding complexity will be

only O(log(1/ε)k) which is linear in k and therefore order optimal.

Note that for this construction each storage node is picking its degree

and which data nodes to contact. This property, which is sometimes

called the rateless property of fountain codes, corresponds to hav-

ing each column of the G matrix being created independently and

is the transpose of the decentralized property [4] mentioned in the

previous section. Therefore, to construct these fountain codes over

a network we need a mechanism for storage nodes to be able to find
random data nodes and request for their data packets which will be

in turned routed back to them. Such a mechanism is presented in the

next section for grid topologies.

Fig 1. Example of the randomized algorithm for grids (n = 25, k = 4). The nodes
with the thermometer are data nodes placed on the same grid site as a storage node.
Here, storage node A wants to find a random data node. It selects a random location on
the grid (the location of node B) and a request is routed greedily (solid arrows). Since
there is no data node in site B, a random walk starts (dotted arrows) until data node C is
found. In the example R = 4, W = 5.

4. RANDOMIZED ALGORITHM FOR GRID TOPOLOGIES

In this section we address the problem of how to construct the foun-

tain code over a grid topology with only local randomized decisions.

We assume that our storage nodes are placed on the sites of a grid

(of size
√

n × √
n) with wireless transmission radius large enough

for the four nearest neighbor connectivity. Grid topologies of sen-

sor networks have been analyzed and many results are known, see

for example [2]. We further assume that the k = qn data nodes are

placed randomly on some sites of the grid (as an extra device placed

on the same location with the storage node and operating indepen-

dently). We also assume that each node knows its location on the

grid.

We want to use the networked storage strategy proposed in the

previous section but we need a mechanism to send requests to ran-

dom data nodes who can then route back their data packet. After

d data packets have been received the storage node can XOR them,

store the result and essentially become a fountain code encoded sym-

bol. To find a random data node, we propose the following scheme.

First a randomly selected location of the grid is selected by the stor-

age node who is going to initiate the request. Then, a request packet

is routed to that random location using greedy geographic routing.

Since every node knows their location this procedure can be per-

formed with only local information and will terminate after R steps,

and R is always O(
√

n). If that randomly selected site happens to

have a data node, then that data node receives the request, routes

back the data packet using greedy geographic routing and the proce-

dure terminates. If however the randomly selected site is occupied

only by a storage node, then the request initiates a (simple) random

walk until it hits a site containing a data node. We assume that the

k = qn data nodes are randomly scattered, such that all the

(
n
qn

)

ways of choosing their locations are equally probable. Therefore, the
data nodes are acting like traps for the random walk and what we

want to show is that the walk is trapped sufficiently fast. Specifically,

let a random walk start from a uniformly selected position (which we

assume not to be a data node). Let W denote the (random) number

of steps before the random walk is trapped (i.e. hits a data node

and terminates). Therefore, in the proposed protocol there are two

phases: the routing phase (geographic routing to the uniformly pre-

selected position) which takes R = O(
√

n) steps and the random

walk phase which takes W steps. We want to show that

R + W � R (3)

asymptotically almost surely (a.a.s.) for large n. This means that the

cost of the random routing dominates and the average cost is nearly

equal to the case where the measuring node knew where to send the
packet.

Note that the actual probabilities that each data node receives the

request under this algorithm are random variables that depend on the
realization of their locations. For example if there is a cluster of data

nodes somewhere, the nodes having only data node neighbors will be

receiving the requests with lower probability relative to data nodes

with many storage node neighbors. However, the expected reception

probabilities are uniform and large fluctuations should not typically

happen. In this paper we only analyze this expected behavior and in

future work we plan to establish a concentration result around this

expectation for large networks.

There has been significant work on problems related to random

walks on infinite lattices with traps [6, 7], but to the best of our

knowledge, there are no known results for the scaling behavior of

the trapping time for finite lattices. Therefore the following result
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might be of independent mathematical interest:

Theorem 1. Let a random walk start from a uniformly selected
position on a

√
n by

√
n grid. Exactly qn of the nodes are traps and

all the
(

n
qn

)
possible trap configurations are equally likely. If W

denotes the number of steps before the random walk hits a trap for
the first time, then W = O(log n) a.a.s. in particular

Pr(W > log n) = O(
1

log log n
). (4)

Proof: Due to space constraints, we present a sketch of the proof

to highlight the techniques. We define an “inner region” Rinner in-

side the grid which has enough distance from the boundary so that a

random walk that starts inside it will not be affected by the boundary

before it takes log n steps.

Pr(W > log n) ≤Pr(W > log n|W0 ∈ Rinner) + 4
log n√

n

where the last inequality follows from the fact that all nodes have a

probability of 1/n of being W0 and there are less than 4
√

n log n
nodes in Rinner. To bound the first term, let S� (called the range of
the random walk) denote the number of distinct sites visited by the
random walk in � steps. If we know S�, the probability that the walk

has not ended after � ≤ log n steps is

Pr(W > �|W0 ∈ Rinner, S� = s) =

(
n − s
qn

)
(

n
qn

) . (5)

Using Stirling’s approximation, for s ≤ log n and ρ
def
= s/n, it is not

hard to show that there exits a constant cs such that Pr(W > �|W0 ∈
Rinner) ≤ cs

∑�
i=1(1 − q)iPr(S� = i|W0 ∈ Rinner).

The sum goes only up to � because S� can never be larger than

�. Notice that random walks that start inside Rinner and take less than

log n steps are indistinguishable from random walks on the infinite

grid (since they are not affected by the boundary), so if S̃� is the

range of the random walk on the infinite grid, we can write

Pr(W > �|W0 ∈ Rinner) ≤ cs

�∑
i=1

(1−q)i
Pr(S̃� = i) = csE(1−q)S̃� .

(6)

The following results are known from Dvoretzky and Erdős [5],

and Jain and Pruitt [8] for S̃�.

µ = E[S̃�] = c1
�

log �
+ O

(
�

(log(�)2)

)
. (7)

σ2 = Var(S̃�) ≤ c2
�2

(log(�)2)
. (8)

Using Chebyschev’s inequality for S̃� we get

Pr(S̃� ≤ µ − tσ) ≤ Pr(|S̃� − µ| ≥ tσ) ≤ 1

t2
(9)

Let k(�) = µ − tσ = c1
�

log �
− c2t(�)

�
(log(�))2

, where t(�)

is a free parameter of the Chebyschev bound. We choose t(�) =√
log(�) So from (9), we obtain

Pr(S̃� ≤ k(�)) ≤ 1

t2
=

1

(
√

log(�))2
. (10)

Recall that the sum we want to bound is

Pr(W > �|W0 ∈ Rinner) ≤ cs

�∑
i=1

(1 − q)i
Pr(S̃� = i). (11)

This is the sum of the density of S̃� weighted with a decreasing func-

tion (1 − q)i. It is therefore clear that if we shift some probability
mass of the distribution of S� to smaller values of i, we will get a
larger sum. We define a new function g(i) by shifting all the prob-

ability mass of S̃� that is smaller than k(�) to 1: g(1) = 1
log(�)

.

The remaining mass Pr(S̃� > k) is of course smaller than 1. So we

may define g(k(�)) = 1 and let g(i) = 0 for all other values. We

therefore have the key inequality:

Pr(W > �|W0 ∈ Rinner) ≤ cs

�∑
i=1

(1 − q)i
Pr(S̃� = i) (12)

≤ cs

�∑
i=1

(1 − q)ig(i)

= (1 − q)cs
1

log(�)
+ cs(1 − q)

c1
�

log(�)−
√

log(�)c2
�

log(�)2 .

If we choose the number of steps taken by the random walk as

� = log n it is not hard to use the previous bound and obtain the

desired result.

We have therefore shown that for grids each storage node can

follow this simple randomized protocol to find random data nodes

using O(
√

n) communication. Note that this is the diameter of the

network and therefore the communication required to find a random

data node is order optimal.
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