
EFFICIENT TRACKING IN A NETWORK OF SLEEPY SENSORS

Venugopal V. Veeravalli and Jason A. Fuemmeler

University of Illinois at Urbana-Champaign
ECE Department and Coordinated Science Laboratory

1308 West Main Street
Urbana, Illinois, 61801-2307

ABSTRACT

We study the problem of tracking an object that is moving randomly
through a dense network of wireless sensors. We assume that each
sensor has a limited range for detecting the presence of the object,
and that the network is sufficiently dense so that the sensors cover the
area of interest. In order to conserve energy the sensors may be put
into a sleep mode with a timer that determines the sleep duration. We
assume that a sensor that is asleep cannot be communicated with or
woken up. Thus the sleep duration needs to be determined at the time
the sensor goes to sleep based on all the information available to the
sensor. The objective is to track the location of the object to within
the accuracy of the range of the sensor. However, having sleeping
sensors in the network could result in tracking errors, and hence there
is a tradeoff between the energy savings and the tracking error that
results from the sleeping actions at the sensors. We consider the
design of sleeping policies that optimize this tradeoff.

Keywords: wireless sensors, sleep mode, random walk, dy-
namic programming.

1. INTRODUCTION

Advances in technology are enabling the deployment of vast sensor
networks through the mass production of cheap wireless sensor units
with small batteries. Such sensor networks can be used in a variety of
application areas. Our focus in this paper is on applications of sensor
networks that involve tracking, e.g., surveillance, wildlife studies,
environmental control, and health care.

We study the problem of tracking an object that is moving through
a network of wireless sensors as shown in Figure 1. Each sensor has
a limited range for detecting the presence of the object being tracked,
and the objective is to track the location of the object to within the
accuracy of the range of the sensor. For such a tracking problem to
be well-posed we need to assume that the sensor field is sufficiently
dense so that the sensors cover the entire area of interest. The object
follows a random path through the sensor field whose statistics are
assumed to be either known a priori or estimated on-line.

The sensor nodes typically need to operate on limited energy
budgets. In order to conserve energy, the sensors may be put into a
sleep mode. One way to effect the transition between the active and
sleep modes is to have the sensor be in sleep mode by default and to
use a low-power radio channel to wake up (page) the sensor when
it is needed. To the best of our knowledge, this approach has been
taken in most of the literature to date on energy-efficient tracking
using sensor networks (see, e.g., [1–7]). The design problem that

This research was supported by the National Science Foundation under
the award CCF-0049089, through the University of Illinois, and by the Mo-
torola Center for Communications at the University of Illinois.

Fig. 1. Object tracking in a field of sensors.

we consider is very different in that we assume that using a wake-up
channel is impractical given current sensor technology.

There are alternatives to the wake-up channel approach. For ex-
ample, we may have each sensor enter and exit the sleep mode us-
ing a fixed or a random duty cycle. A more intelligent, albeit more
complicated, approach is to use information about the object trajec-
tory that is available to the sensor from the network to determine
the sleeping strategy. In particular, it is easy to see that the location
of the object (if known) at the time when the sensor is put to sleep
would be useful in determining the sleep duration of the sensor; the
closer the object, the shorter the sleep duration should be. We take
this latter approach in this paper in designing sleeping strategies for
the sensors.

It is clear that having sleeping sensors in the network could result
in tracking errors, and hence there is a tradeoff between the energy
savings and the tracking error that results from the sleeping at the
sensors. The sleeping policies at the sensors should be designed to
optimize this tradeoff. In order to simplify the optimization prob-
lem, we assume that there is a central unit that controls the sensor
network. All information about the object trajectory is stored at this
central unit and is used to determine sleep times of sensors that come
awake.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the tracking problem in mathematical terms and
define the optimization problem. In Section 3, we outline a dynamic
programming approach to finding the optimal solution. However, we
find that the size of state space renders the optimization intractable
for networks of more than a handful of sensors. We therefore pro-

V ­ 11451­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

pose some practical approximations in Section 4. In the course of
deriving these approximations, we also develop a lower bound on
optimal performance that allows us to characterize sleeping policy
performance. In Section 5, we provide some numerical results that
illustrate the efficacy of the proposed sleeping policies. We summa-
rize and conclude in Section 6.

2. PROBLEM DESCRIPTION

The essential features of the tracking problem described in Figure 1
are contained in a one-dimensional simplification where the sensors
are placed on a line and the object undergoes a random walk on the
line. We hence consider this simplification in the remainder of the
paper to facilitate presentation, with the understanding that the tech-
niques that we develop can be generalized to the two-dimensional
tracking problem.

Consider a one-dimensional sensor network with sensors placed
unit distance apart from −m to +m. An object that has to be tracked
by this sensor network is assumed to undergo a random walk along
the line. Let bk denote the location of the object at time k. Then

bk+1 = bk + wk (1)

where {wk} are i.i.d. integer-valued random variables with known
distribution. We assume that wk ∈ [−n, n] with n typically being
much smaller than m. For example, {wk} could be i.i.d. Bernoulli
random variables that take the value +1 or −1 with equal probabil-
ity. The tracking problem stops when the object leaves the network,
i.e., when bk /∈ {−m, . . . , 0, . . . , m}.

A central unit, which controls this sensor network, is assumed
to maintain the information required to compute the sleep times of
the sensors in the system and to assign the sleep times for the sen-
sors that come awake. A sensor is either awake or asleep at each
time instant. Each sensor that wakes up remains awake for one time
unit during which the following actions are taken: (i) if the object is
within its range, the sensor detects the object and sends this informa-
tion to the central unit, and (ii) the sensor receives a new sleep time
(which may equal zero) from the central controller. The input from
the central unit is used to set a sleep timer at the sensor, which gets
decremented by one every time unit.

Let rk,� denote the residual sleep time at time k for the sensor
located at position �, i.e., rk,� is the value of the sleep timer at sensor
� at time k. Also let uk,� denote the control input (sleep time) given
to sensor � from the central unit at time k. We can write the update
of rk,� as

rk+1,� = (rk,� − 1)11{rk,�>0} + uk,�11{rk,�=0} (2)

where 11 is the indicator function. We use the vector notation
rk = (rk,−m, . . . , rk,m) and uk = (uk,−m, . . . , uk,m).

Based on (1) and (2), we see that we have discrete-time dynami-
cal model that describes our tracking problem, with exogenous input
wk and control input uk. The state of the system at time k is de-
scribed by xk = (bk, rk) and it has the following evolution in time:

xk+1 =

(
f(xk, uk, wk) if xk �= T

T if xk = T or if bk /∈ {−m, . . . , m}

(3)
where T denotes a terminal state that the system reaches when the
objects exits the sensor network, and f is described by (1) and (2).
Once in the terminal state, the system remains there indefinitely.
With some possible abuse of notation, we denote the components
of the terminal state corresponding to both bk and rk by T .

Unfortunately, not all of xk is known to the central unit at time
k since bk is known only if the sensor at location bk is awake at time
k. Thus we have dynamical system with incomplete (or partially
observed) state information. If we denote the observation available
to the central unit at time k by zk, then zk = (sk, rk), with

sk =

8><
>:

bk if bk �= T and rk,bk
= 0

E if bk �= T and rk,bk
> 0

T if bk = T

(4)

where E denotes an unknown or ”erasure” value.
The total information available to the control unit at time k is

given by
Ik = (z0, . . . , zk, u0, . . . , uk−1). (5)

with I0 = z0 denoting the initial (known) state of the system. The
control input for sensor � at time k is allowed to be a function of Ik,
i.e.,

uk,� = µk,�(Ik). (6)

We assume that an energy cost of unity is contributed by each
sensor that is awake, and a tracking cost of c is incurred for each
time unit that the object is not tracked. The total cost at time k is
then given by

g(xk) = 11{xk �=T }

"
c 11{rk,bk

>0} +

mX
�=−m

11{rk,bk
=0}

#
. (7)

Thus c is the parameter used to tradeoff energy consumption and
tracking errors, and the total cost values for different values of c
produce the tradeoff curve for a given sleeping policy.

The total cost (over a possibly infinite horizon trajectory) for the
system is given by

J0(I0, µ0, µ1, . . .) = E

"
∞X

k=1

g(xk)

˛̨̨
˛̨I0

#
(8)

Since g is bounded by (2m + 1 + c), the cost function J0 is guar-
anteed to be bounded as long as the expected time for the object to
exit the system is finite. The latter condition holds for any nontriv-
ial random walk. Hence the following optimization problem is well
defined.

J∗
0 (I0) = min

µ0,µ1,...
J0(I0, µ0, µ1, . . .) (9)

The solution to this optimization problem for each value of c yields
an optimal sleeping policy. The optimization problem falls under the
framework of partially observable Markov decision process (POMDP),
and the optimal solution may be obtained via dynamic programming
(DP).

3. OPTIMAL SOLUTION VIA DP

3.1. Sufficient statistic for DP

The information for decision-making at time k given in (5) is un-
bounded in memory. It is easy to show via standard arguments (see,
e.g. [8]) that a sufficient statistic for optimization, that is bounded
in memory, is given by the probability distribution of the state xk,
given Ik. Since rk is part of xk, the sufficient statistic can be written
as vk = (rk, pk), where pk is a row vector that denotes the prob-
ability distribution of the location of the object, bk, given Ik. The
components of pk are given by:

pk,� = P({bk = �}|Ik), � = −m, . . . , m, (10)

V ­ 1146

and pk,m+1 = P({bk = T }|Ik).
The sufficient statistic (or belief state as it is referred to in the

POMDP literature [9]) can be updated recursively based on the new
observation. It is easiest to see this in two steps. First we update pk

without using the new observation zk+1, i.e., using only Ik to form
vector qk+1 with components

qk+1,� = P({bk+1 = �}|Ik) (11)

and qk+1,m+1 = P({bk+1 = T }|Ik). The vector qk+1 is obtained
from pk via a Markov evolution with transition matrix P defined by
statistics of the jump variables {wk}:

qk+1 = pk P (12)

The last row of P corresponds to the absorbing terminal state.
We now “clean up” qk+1 using the new observation zk+1 as

follows. If the object is observed at sensor � we replace qk+1 with
a unit point mass at �. If the object is not observed by any of the
sensors that are awake, we zero out the those components of qk+1

and normalize the remaining ones. Thus

pk+1,� = 11{sk+1=�} + 11{sk+1=E} 11{rk+1,� �=0} ·

·
qk+1,�P

i 11{rk+1,i �=0}qk+1,i

.
(13)

3.2. Tractability of optimal solution

We can easily write down the finite-horizon DP equations in terms
of the sufficient statistic vk = (rk, pk). Furthermore, it is easily
established that the finite-horizon cost-to-go functions converge as
the horizon goes to infinity and that the corresponding limits are in-
dependent of k due to the stationary nature of the problem. Thus
the optimal cost in (9) is given by the infinite-horizon cost-to-go
function, and the corresponding optimal control functions µk are the
same for all k. The optimal cost and the optimal sleeping policy can
hence be found by solving a Bellman equation [8], via known tech-
niques such as successive approximation. However, the optimal so-
lution is intractable even for small sensor networks. This is because
the state space grows exponentially with the number of sensors. For
example, even with seven sensors with maximum sleep time of only
10 and probability mass function quantized to multiples of 0.1, there
are about 109 possible states vk.

4. PRACTICAL APPROXIMATIONS

4.1. QMDP Solution

Because the optimal solution is intractable, we wish to formulate an
alternative problem that is tractable yet retains most of the essential
features of the optimal soltion. A popular approach to finding good
suboptimal solutions for POMDP’s is to assume that at times after
the current time, we will have perfect state information. The solution
so obtained is known in the literature as the QMDP solution [9].

We assume that beyond the current time, each sensor somehow
knows the exact position of the object each time it wakes up. Thus,
whenever a sensor wakes up, the set of possible distributions it sees
is the set of point mass distributions. Under this assumption it is
clear that from the perspective of a sensor �, the actions of the other
sensors do not affect the state evolution. We also know that a sensor
� can only affect the cost that accrues either when sensor � comes
awake or when a tracking error occurs at sensor �. Thus, the opti-
mization problem under this assumption fully separates into 2m + 1
problems — one for each sensor.

Let us solve the optimization problem at sensor � using an infinite-
horizon dynamic program. Since the residual sleep times of the other
sensors are irrelevant to optimal decision making in the QMDP set-
ting, the sufficient statistic for decision making at time k is simply
pk. The Bellman equation for this problem is easily shown to be

J(�)(p) = min
µ(�)

“ uX
i=1

c
h
pP

i
i

�
+

X
j �=T

ˆ
pP

u+1
˜
j
+

X
k

ˆ
pP

u+1
˜
k

J(�)(ek)
”˛̨̨

u=µ(�)(p)

(14)

where eb denotes a row vector with a one in position b and zeros
everywhere else, and where J(�) is the infinite-horizon cost-to-go
function for sensor �. The QMDP policy for sensor �, µ

(�)
Q , is given

from the minimization on the RHS of (14).
If we can solve (14) for p = eb for b ∈ {−m, . . . , m,T }, we

have sufficient information to define the solution for any other dis-
tribution p. Thus we have 2m + 2 equations in 2m + 2 unknowns.
However, this set of equations does not have a unique solution since
we can add an arbitrary constant to a solution J(�) and still sat-
isfy the equations. We therefore add the additional constraint that
J(�)(eT) = 0 (which is clearly the desired solution). This reduces
the problem to one of 2m + 1 equations in 2m + 1 unknowns with
a unique solution. An effective method for finding the solution is to
use policy iteration [9].

4.2. A lower bound on optimal performance

Since the QMDP solution assumes more information than is actually
available, the cost obtained in its derivation is a lower bound on the
cost of any scheme. In particular, if we apply the QMDP policy to the
actual system (without perfect state information), we will achieve a
higher cost. Intuitively, the lower bound should be tightest when the
number of tracking errors is small so that the assumption that the
position of the object is known is most realistic.

4.3. Point mass approximations

The QMDP policy, µQ = {µ
(�)
Q : ∀�} is considerably easier to com-

pute than the optimal policy and can be computed on-line after some
initial off-line computation has been completed. However, such on-
line computation requires sufficient processing power and could in-
troduce delays. It would be convenient if µ

(�)
Q could be pre-computed

and stored either at the central controller or at sensor � itself. The lat-
ter option is particularly attractive since it allows for decentralized
implementation. But the set of possible distributions p is potentially
quite large — even if quantization is performed — and could make
the storage requirements prohibitive.

To make the storage requirements feasible, we consider approx-
imations of the QMDP algorithm where p is replaced by a unit point
mass distribution. There are two options for the placement of the
unit point mass: (i) the centroid of p, and (ii) the nearest point to the
sensor on the support of p. The latter option allows for the imple-
mentation of the QMDP policy without detailed information about the
statistics of the random walk – only the support of the jump variables
wk is required!

5. NUMERICAL RESULTS
Simulations of the various polices were performed for 1-D sensor
networks. In these simulations, the object was initially placed at
the center of the networtk and the location of the object was made
known to each sensor. By averaging over many simulation runs, it
was possible to compute the average number of tracking errors and
the average number of sensors awake per unit time. These values

V ­ 1147

could then be plotted for different values of c to generate a tradeoff
curve for these two quantities.

Figures 2 and 3 show results for two different networks. The
results of Figure 2 are for a network with 41 sensors (m = 20)
where the object moved according to a symmetric random walk. In
other words, the {wk} were i.i.d. random variables taking on value
+1 or −1 with equal probability. The results of Figure 3 are for
a network with 61 sensors (m = 30) where the {wk} were i.i.d.
random variables uniformly distributed over {−3,−2, . . . , 2, 3}.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

m=20, Symmetric Random Walk

Lower Bound
Q

MDP
Q

MDP
 w/ Centroid

Q
MDP

 w/ Nearest Point

Fig. 2. Comparison of lower bound and QMDP solutions for m = 20.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Sensors Awake per Unit Time

T
ra

ck
in

g
E

rr
or

s
pe

r
U

ni
t T

im
e

m=30, ±3 Max Uniform

Lower Bound
Q

MDP
Q

MDP
 w/ Centroid

Q
MDP

 w/ Nearest Point

Fig. 3. Comparison of lower bound and QMDP solutions for m = 30.

Four curves are plotted in each figure. The first curve is the
tradeoff curve that results from the lower bound described in Sec-
tion 4.2. Although this curve is unachievable, it is useful as a base-
line since if a sleeping policy approaches the performance of this
reference curve, that sleeping policy must also be approaching opti-
mal performance. The remaining three curves are simulation results
for the QMDP solution and for the QMDP solution using the centroid
and nearest point approximations described in Section 4.3.

From these simulation results, we see that the QMDP solution
is very close to the curve for our lower bound and is thus nearly
optimal. This is especially true in the regime of interest where the
tracking error is small. The use of point mass approximations does
result in some loss of performance, but again this loss is small for
small tracking error.

Note that we could also consider a more primitive policy (which
does not use location information) where each sensor would be awake
with some probability π at each time instant. As π were varied, we
would achieve a tradeoff curve that is a straight line between the
points (0, 1) and (2m + 1, 0) in the coordinate system used in the
above plots. When compared with this tradeoff curve, the schemes
we have proposed result in significant improvement.

We have obtained similar results for a variety of other cases for
the object trajectory, including one-dimensional walks with more
complicated statistics for wk, and two-dimensional random walks,
which we could not present in this paper due to space limitations.

6. CONCLUSION
We studied a tracking problem with sleepy sensors and showed that
the tradeoff between energy consumption and tracking errors can be
considerably improved by using information about the location of
the object. In particular significant savings in energy are possible by
allowing for some tracking errors. The QMDP approach appears to be
very promising in that near optimal performance can be obtained at
reasonable complexity. Avenues for further research include decen-
tralized strategies for the scenario where a central controller is not
available, and adaptive strategies for the case where the statistics of
the object’s trajectory are unknown.

7. REFERENCES

[1] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-based
Collaboration for target tracking in sensor networks,” IEEE
Trans. on Wireless Comm., vol. 3, no. 5, pp. 1689–1701, Sep
2004.

[2] W. Zhang and G. Cao, “An energy efficient framework for
mobile target tracking in sensor networks,” in IEEE MILCOM,
2003, vol. 1, pp. 597–602.

[3] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed
target classification and tracking in sensor networks,” Proc. of
the IEEE, vol. 91, no. 8, pp. 1163–1171, August 2003.

[4] S. Balasubramanian et al, “Distributed and collaborative track-
ing for energy-constrained ad-hoc wireless sensor networks,”
in IEEE WCNC, 2004, vol. 3, pp. 1732–1737.

[5] R. Gupta and S. R. Das, “Tracking moving targets in a smart
sensor network,” in IEEE WCNC, 2004, vol. 3, pp. 3035–3039.

[6] Y. Xu and W-C. Lee, “On localized prediction for power effi-
cient object tracking in sensor networks,” in Proc. of 23rd Int.
Conf. on Distributed Computing Systems, 2003, pp. 434–439.

[7] H. Yang and B. Sikdar, “A protocol for tracking mobile targets
using sensor networks,” in Proc. IEEE Int. Workshop on Sensor
Network Protocols and Applications, 2003, pp. 71–81.

[8] D. Bertsekas, Dynamic Programming, Prentice-Hall, Upper
Saddle River, NJ, 1987.

[9] D. Aberdeen, “A (revised) survey of approximate meth-
ods for solving POMDP’s,” Technical Report, Dec. 2003,
http://users.rsise.anu.edu.au/ daa/papers.html.

V ­ 1148

