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ABSTRACT

We consider the problem of distributed target tracking of a
linear dynamical system via networked sensors. Our setup
consists of a set of sensors connected to a fusion center by
means of communication links. Unreliable communication
channels leads to communication delays and loss of infor-
mation. To address this problem we model the arrival of
messages from the sensors to the fusion center by a random
process. The question arises as to what messages to encode
for the fusion center. One possibility that has recently re-
ceived much attention is to transmit local observations to
the fusion center, which then fuses these intermittent ob-
servations through Kalman Filtering techniques. In contrast
we develop a scheme for fusion of intermittent local state
estimates. The salient aspects of scheme are: (a) Efficiency,
i.e., covariance of local estimate is no larger than covari-
ance of observation; (b) Robustness, i.e., the error covari-
ance is bounded with high probability even under vanishing
link-connectivity. In contrast fusion of intermittent observa-
tions leads to unbounded errors even for moderate values for
link-connectivity; (c) Scalable performance, i.e., a K-node
sensor network with K guaranteed communication links is
inferior to an N-node sensor network with K functioning
communication links on average.

1. INTRODUCTION

We consider a collection of sensors that collectively track
a linear system that is driven by noise. The measurement
model is also linear, hence the optimal MMSE centralized
solution is given by the canonical Kalman filter. In this
paper we consider distributed tracking with a collection of
sensors connected to a fusion center by means of commu-
nication links. The communication links are unreliable and
messages sent to the fusion center from the sensors are sub-
ject to packet losses, with no retransmission. The question
arises as to what messages to encode for the fusion center at
each sensor.
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The general problem has received significant attention
(see [3, 5, 7, 8, 1, 9, 10] and references therein). Of partic-
ular relevance to our scenario is the recent work on Kalman
Filtering with intermittent observations [9]. In their setup
the sensors directly send their local observations to the fu-
sion center but the arrival of these messages are subject to
random packet losses. The fusion center fuses these inter-
mittent observations through Kalman Filtering techniques.
They study the statistical convergence properties of the es-
timation error covariance, showing the existence of a crit-
ical value for the arrival rate of the observations, beyond
which a transition to an unbounded error occurs. Moreover,
beyond this critical regime the likelihood that the error re-
mains bounded goes to zero as well.

We consider the setup where each sensor transmits local
sufficient statistics (i.e. summary of past local observations)
rather than the raw measurements. The practicality of this
scheme is motivated by recent trends in sensing, computing
and communication technology, where it is becoming in-
creasingly clear that communication-energy/bit far outstrips
computational as well as sensing energies. Similar schemes
have been proposed in the target tracking literature for fu-
sion of tracks from multiple sensors; Chong et al [11] pro-
vide a thorough review of these approaches. Our scheme
has several advantages over transmission of raw measure-
ments. First, it is efficient, i.e., covariance of local suffi-
cient statistics is no larger than covariance of observation.
Second, since the fusion center receives a summary of local
measurements rather than the instantaneous observation, the
performance of our scheme is superior. Third, the scheme is
robust to communication link failures and the error covari-
ance is bounded with high under vanishing link connectiv-
ity. In contrast fusion of intermittent observations leads to
unbounded errors even for moderate values for link connec-
tivity. Finally, our scheme leads to scalable performance,
i.e., we show that an N -node sensor network with K < N
random operational links to the fusion center at any instant
of time has significantly higher performance than K-node
sensor network with guaranteed connectivity.

The main difficulty of our proposed scheme is in op-
timally fusing the intermittent local sufficient statistics re-
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ceived at the fusion center. These difficulties arise due to:
(a) Conditional independence: It is well known in gaussian
estimation problems that if the local measurements are con-
ditionally independent when conditioned on the underlying
parameter, the optimal fusion rule is a linearly weighted av-
erage of the optimal local estimates. However, when the
underlying state (or parameter) is random and time vary-
ing the local measurements are no longer conditionally in-
dependent when conditioned on the current state. We deal
with this scenario by appealing to ideas developed in [3, 5].
In particular, we show that conditional independence can be
recovered if the conditioning variable includes the previous
state estimate. (b) Random Arrivals: This leads to messages
that arrive at the fusion center from random collections of
sensors. Due to message losses, the fusion center will not
have local estimates from each sensor corresponding to a
common time; the local state estimates are no longer syn-
chronized and the fusion rule has to be substantially mod-
ified. We present two different schemes to deal with this
issue. In the first scheme, a compensation is transmitted by
each sensor in addition to local state estimate. The second
scheme is a sub-optimal scheme wherein local state esti-
mates are fused by incorporating their instantaneous cross-
correlation.

2. PROBLEM STATEMENT

Let Rn denote n-dimensional real vectors, and denote by
Mn×n the set of symmetric positive-definite matrices of di-
mension n × n. We consider the discrete-time system

Xt+1 = AXt + Wt, X0 ∼ N(0, Σ0), (1)

where A is an n×n matrix and W = (Wt : t = 0, 1, 2, · · · )
is an IID sequence such that Wt ∼ N(0,ΣW ), indepen-
dently of X0.

We consider tracking the sequence (Xt : t = 0, 1, 2, · · · )
based on measurements taken by a collection V of sensors.
The measurement of sensor v ∈ V taken at time slot t is
denoted by Yt(v) ∈ Rm and it satisfies

Yt(v) = Ct(v)Xt + Ut(v), v ∈ V,

where Ct(v) is an m×n matrix, and (Ut(v) : t = 0, 1, 2, · · · )
is an IID sequence such that Ut(v) ∼ N(0, ΣU ). In partic-
ular if all measurements are immediately available to a cen-
tral processor then the MMSE estimator is a Kalman filter.
Specifically, the MMSE estimate Xt|t = E[Xt|Yτ (v) : v ∈
V, τ ≤ t] of Xt based on Yτ (v), v ∈ V, τ ≤ t, satisfies

Xt|t = Xt|t−1 +Pt|t
∑
v∈V

CT
t (v)Σ−1

U (Yt(v)−C(v)Xt|t−1)

(2)

where Pt|t = E(Xt −Xt|t)(Xt −Xt|t)T is the conditional
error covariance matrix at time t and is given by the recur-
sion:

P−1
t|t = P−1

t|t−1 +
∑
v∈V

CT
t (v)Σ−1

U Ct(v)

These steps are commonly referred to as the measurement
update steps. To complete the Kalman filter updates we re-
quire the so called prediction steps, which are given by:

Xt+1|t = AXt|t, Pt+1|t = APt|tAT + ΣW (3)

To complete the problem setup we need to describe the
communication connectivity model. The connections at ev-
ery instant of time is an IID process. In one model we as-
sume that the connection between each sensor, v, and the fu-
sion center are independent Bernoulli processes, {γk(v)}, k =
0, 1, . . . , with parameter p. We also consider an alternative
bulk-model where the number of connections, K, at any in-
stant of time is fixed and the set of K sensors that connect to
the fusion center, CK = {v1, v2, . . . , vK} ⊂ V are chosen
independently at each instant of time. For convenience we
define the indicator function Iv(t) to denote whether or not
the sensor, v, is operational at time t and Nv(t) = max{k ∈
[0, t] | Iv(k) = 1} to denote the final arrival time of vth
sensor before time t. Let Yk

v denote the sensor v’s measure-
ment upto time k and N(t) = (N1(t), N2(t), ....N|V |(t))
the vector of final arrival times. Our main objective is to
compute the optimal estimate,

Xt|N(t) = E(X(t) | YNv(t)
v , ∀ v ∈ V )

By convention if no arrival occurs before t the conditioning
event YNv(t)

v is omitted.

Optimal Performance: The above problem formalizes the
notion of optimal performance in that it characterizes recov-
ery of centralized performance through decentralized pro-
cessing. To explain this point further, note that in the bernoulli
model with |V | sensors the average number of messages
received by the fusion center in T units of time is p|V |T .
Nevertheless, since each sensor encodes the history of its
local observations the fusion center potentially has access
to |V |T observations irrespective of the size of connection
probability p for sufficiently large T . These gains are real-
ized when there exist schemes whereby fusing the local es-
timates/messages (which are summaries of locally observed
data) is equivalent to centrally processing the corresponding
raw observations, i.e., all past observations τ ≤ Nv(t), ∀ v ∈
V . The following section presents several situations where
the optimal centralized estimate can be exactly recovered
through distributed processing.
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3. COMMUNICATION PROTOCOLS AND FUSION
ALGORITHMS

In this section we outline several cases and present proto-
cols for which the centralized performance is achievable.
The fundamental issues are: (A) Lack of conditional inde-
pendence of local observations at different sensors condi-
tioned on the current state; (B) Fusion of unsynchronized
messages.

No Process Noise & Parameter Estimation Problems:
This is the case where W (t) = 0 in Equation 1, i.e., X(t +
1) = AX(t). The parameter estimation problem corre-
sponds to setting A = In. The main feature here is that
the time history of past observations, i.e., YNv(t), v ∈ V
are conditionally independent given current state. There-
fore, the optimal protocol in this case is to send the local
estimates and the fusion rule is given by:

Xt|N(t) = Pt|N(t)

∑
v∈V

(P v
t|Nv(t))

−1Xv
t|Nv(t)

where, Pt|N(t), P
v
t|Nv(t) are the global and local covariance

error matrices based on data upto N(t) and Nv(t) respec-
tively. It is interesting to compare different possibilities to
highlight the fundamental differences. We consider two sce-
narios: (a) a single sensor with guaranteed connection to
a fusion center, (b) |V | sensors with unreliable links with
bernoulli parameter, p = 1/|V |. For Case (b) the average
number of samples in time T is p|V |T = T . For the latter
scenario consider two possibilities: transmitting raw obser-
vations vs. transmitting local MMSE estimates.

Theorem 3.1 Suppose the average MMSE errors (where
the average is taken w.r.t. number of samples) in these three
cases are denoted as MMSEsingle, MMSEraw,
MMSElocal. Then:

E(Pt|N(t)) = MMSElocal =
1

|V |MMSEraw

t→∞−→ 1

|V |MMSEsingle

Singe Remote Sensor: Here we consider a single remote
sensor, l, transmitting messages to a fusion center, which
also has a local sensor, f . This case is interesting because
the observations at the two sensors are no longer condition-
ally independent. Therefore, the messages have to be com-
pensated to account for the dependence. The main idea is
based on the information form of the Kalman filter, which
we briefly explain. The optimal global and local Kalman
filter update equations satisfy:

(Pt|t)−1Xt|t = (Pt|t−1)−1Xt|t−1 + CT
l Σ−1

U yl + CfΣ−1
U yf

(P l
t|t)

−1X l
t|t = (P l

t|t−1)
−1X l

t|t−1 + CT
l Σ−1

U yl

(P f
t|t)

−1Xf
t|t = (P f

t|t−1)
−1Xf

t|t−1 + CT
f Σ−1

U yf

where, (Pt|t)−1 = (Pt|t−1)−1 + CT
l R−1Cl + CT

f R−1Cf .
It follows from straightforward algebraic manipulations that
the fused sensor update can be re-written in terms of local
estimates.

Xt|t = Xt|t−1 + Pt|t
∑

v∈{l,f}
(P v

t|t)
−1(Xv

t|t − Xv
t|t−1)

− Pt|t
∑

v∈{l,f}
CT

v Σ−1
U Cv(Xt|t−1 − Xv

t|t−1)

This would be the optimal fusion algorithm for the no packet
loss case. Thus the messaging protocol will be identical to
the previous situation but the fusion algorithm will be dy-
namic as it uses previous communicated estimates. We now
describe the scheme to compensate for packet losses. Notice
that under packet losses the local state estimates at the pre-
vious time is not generally available. This requires compen-
sation of the message as well as modification of the fusion
algorithm. It turns out that the fusion algorithm satisfies:

(Pt|N(t))
−1Xt|N(t) = (P f

t|t)
−1Xf

t|t + (Pt|N(t))
−1Sf (t)

+ (P l
t|Nl(t)

)−1Xl
t|Nl(t)

+ (Pt|N(t))
−1At−Nl(t)Sl(Nl(t))︸ ︷︷ ︸

Remote Sensor Message

(4)

Note, that Nf (t) = t for the sensor at the fusion center. The
compensation term Sl(t) is computed locally by the remote
sensor as follows:

Sl(t) = (I − Pt|N(t)CvΣ−1
U Cv)ASk(v) + LtX

v
t|t (5)

where, Lt is a matrix that depends on the system dynamics
as well as the error-covariance matrices. Note that in the fu-
sion rule the compensation and state estimate for the remote
sensor is predicted based on last message received.

Multiple Remote Sensors: The main difficulty in general-
izing the single remote sensor case to multiple sensors is
that this at the very least requires knowledge of the transmit
times N(t). Close observation of Equation 4, 5 clarifies this
point where the computation of covariance matrices require
knowledge of N(t). This is not an issue for the bulk model
scenario with two sensors where only one sensor communi-
cates information at any instant of time. This is because
idle time for one sensor implies busy (transmit) time for
the other sensor. Therefore N(t) is revealed by the sys-
tem without the need for a feedback mechanism. There are
other situations where N(t) is partially known such as when
Carrier-Sense-Multiple-Access (CSMA) protocols are used
for communication. In this situation although each sensor
senses the transmit times, it does not know whether these
transmit times correspond to different sensors (which is re-
quired for computation of Pt|N(t)). In this situation one
may modify the existing protocols so that each sensor af-
ter a transmission ceases transmission until it has sensed a
given number of transmissions. This ensures diversity in
sensing information. With any such modification wherein
N(t) can be either sensed or fedback to the sensor from the
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fusion center the local state estimate and the local compen-
sation can be computed by each sensor as described before
and this is sufficient to realize optimal centralized perfor-
mance. The fusion rule in this case is similar to Equation 4:

(Pt|N(t))
−1Xt|N(t) =

∑
v∈V

(Pt|Nv(t))
−1Xv

t|Nv(t)

+
∑
v∈V

(Pt|N(t))
−1At−Nv(t)Sv(Nv(t))

Our main result is summarized in the following theorem:

Theorem 3.2 Consider the fusion algorithm described
above and suppose the packet losses follow the bernoulli
model described in Section 2. Furthermore, let the N sen-
sors be identical and (A,C) form a detectable pair. We then
have, for all values of link loss probability that,

Prob{lim inf Pt|N(t) = P∞} = 1

where, P∞ is the asymptotic covariance when all the sen-
sor measurements are centrally available. If the packet loss
probability, pNλmax(A) > 1 then, E(Pt|N(t)) −→ ∞.

The above result implies that irrespective of the packet
loss probability there exists time instants when the error co-
variance of the decentralized scheme is arbitrarily close to
the centralized scheme. These time instants can be thought
of as renewal periods and the expected length of the re-
newal period depends only on the loss probability and not
on the underlying dynamics. In contrast if local raw mea-
surements are transmitted and are subject to random losses,
the error covariance is always arbitrarily large. The second
result states that the mean value of the error covariance is
unbounded if the packet loss probability is small relative to
the system dynamics.

A simulation of a one-sensor scheme is provided in Fig-
ure 1. Here we have two choices for A = −1.25, 1 cor-
responding to an unstable system dynamics and a random
walk model. Also, C = 1, R = 2.5 and Q = 1. The critical
value for the transition for the unstable system is a link loss
probability of p = 0.64 and for the random walk it is p = 1.
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