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ABSTRACT

We develop optimal design methods of polarimetric radar signals
that improve the estimation accuracy of the target parameters. A
weighted sum of the Cramér-Rao bound (CRB) of the parameters of
interest is used as the cost function of the optimization. We employ
an array of electromagnetic vector sensors to fully recover the po-
larization information from the target returns. Simulation examples
illustrate the improved system performance.

1. INTRODUCTION

In active sensing systems, the polarimetric aspects of the reflected
signals can be exploited to improve the parameter estimation accu-
racy and the resolution of targets. In practice, the target scattering
matrix is usually unknown and also changes as the target moves with
respect to the radar system. Hence, in order to select the optimal po-
larimetric signal, it must be estimated from the target echoes jointly
with other target parameters of interest.

The problem of selecting the transmit polarized signal has been
receiving increasing attention in recent years. For example, Wang
and Nehorai [1] have developed an adaptive waveform design algo-
rithm for a target in the presence of compound-Gaussian clutter in-
tended to improve the estimation of the scattering matrix. Hochwald
and Nehorai [2] have briefly discussed the optimal transmit signal
for estimating the polarimetric response of a distributed target where
the entries of its scattering matrix are modeled as complex Gaussian
random variables. However, the active models and algorithms pre-
sented in [1] and [2] were developed assuming a static target located
at a known position.

In this paper, we consider a radar system that supports waveform
diversity, including polarization agility, i.e. the polarimetric charac-
teristics of the transmit signal can be changed in time. We assume
the receiver is able to fully exploit the polarization information using
vector sensors to measure the six components of the electromagnetic
(EM) field [3]. It has been shown that employing vector sensors im-
proves the estimation of the signal direction of arrival and resolution
of closely spaced signal arrivals [3].

We address the problem of selecting the radar polarized wave-
form that minimizes the estimation error of the target parameters, i.e.
bearing angles, range, Doppler shift, and scattering matrix. The opti-
mal polarized waveform is selected in order to minimize a weighted
sum of the Cramér-Rao bound (CRB) of these parameters. By com-
puter simulations, we illustrate the improved performance on the pa-
rameter estimation for different scenarios.
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Force Office of Scientific Research MURI Grant FA9550-05-1-0443 and
AFOSR Grant FA9550-05-1-0018.

2. MEASUREMENT MODEL

We consider a target characterized by azimuth φ, elevation ϑ, range
r, Doppler shift ωD, and scattering matrix St. These parameters
are assumed to be deterministic and unknown. To uniquely iden-
tify the polarimetric aspects of the target, polarization diversity is
required and the complete EM information of the signal reflected
from the target has to be processed [2]. To provide these measure-
ments, we assume the receiver of the active sensing system is an
array of electromagnetic vector sensors [3], where each sensor mea-
sures the six components of the EM field. These 6D vector sensors
provide several advantages, such as ability to resolve coherent and
closely spaced signals, improving the estimation accuracy of the sig-
nal direction-of-arrivals, and avoiding spatial undersampling ambi-
guities [3].

In the following sections, we extend the active model presented
in [2] for different scenarios of interest.

2.1. High-Elevation Target

Consider an array of M vector sensors receiving the signal returns
from a target at high elevation, free of interferences and clutter re-
turns. The complex envelope of the measurements can be expressed
as

y(t) = A(θt)Stξ(t − τ)ejωDt + e(t), t = 1, . . . , N, (1)

where θt = [φ, ϑ] is the bearing angles vector. The matrix A(θt) =
q(θt)⊗V (θt) is the array response, where ⊗ is the Kronecker prod-

uct, q(θt) =
�
ej2πkT r1/λ, . . . , ej2πkT rM /λ

�T

represents the phase

of the planewave arriving in the direction given by the vector k at
the position rm of the mth sensor (m = 1, . . . , M ), λ is the sig-
nal wavelength, and V (θt) is the response of a single vector sensor
given by [3]

V (θt) =

�
������

− sin φ − cos φ sin ϑ
cos φ, − sin φ sin ϑ

0 cos ϑ
− cos φ sin ϑ sin φ
− sin φ sin ϑ − cos φ

cos ϑ 0

�
������

. (2)

The complex scattering matrix St represents the polarization change
of the transmit signal upon its reflection on the target:

St =

�
shh shv

svh svv

	
. (3)

The variables shh and svv are the co-polar scattering coefficients,
whereas shv and svh are the cross-polar coefficients. For the mono-

V  1125142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



static radar case, shv = svh. The polarized transmit wave is a nar-
rowband signal which can be represented by a complex vector [2],
[3]

ξ(t) =

�
ξh(t)
ξv(t)

�
= s(t)Q(α)w(β), (4)

where

Q(α) =

�
cos α sin α
− sin α cos α

�
, w(β) =

�
cos β
j sin β

�
.

The angles α and β are the orientation and ellipticity angles of the
polarization ellipse depicted by the electric field vector. The func-
tion of time s(t) represents the scalar complex envelope of the trans-
mitted signal. The time delay is τ = 2r/c, where c is the wave
propagation speed. The vector e(t) is the additive noise corrupting
the radar measurements. The number of recorded snapshots is N .

We note that the waveform design problem consists of selecting
the envelope s(t) and polarization angles α and β in equation (4). A
different approach is selecting different waveforms for each compo-
nent of the vector ξ(t), known as dual signal transmission [3]. We
will discuss both methods in Section 3.

2.2. Low-Grazing-Angle Target

In this section, we discuss the measurement model for a vector-
sensor array receiving the signal from a target located at low ele-
vation angle, over a reflecting surface. Due to the presence of strong
coherent interferences, this scenario represents a challenging prob-
lem that can be found in different defense applications, such as track-
ing sea-skimming missiles. Vector sensors become a valuable tool
given their ability to resolve coherent and closely spaced signals.

Under the above conditions, the received signal is a superposi-
tion of the direct field and multipath components generated by sur-
face reflections. The multiple signals reflected from the surface and
impinging on the receiver can be modeled as coherent and incoherent
components [4]-[6], which are also known as specular and diffuse
multipath components. If the surface were flat and smooth, a four-
path model would represent the total coherent target returns [7], [8],
as sketched in Fig. 1. However, more multipath signals exist due to
the irregularities of the surface. It is assumed that these additional
components are the result of the reflection from many independent
scatterer points. Because of the random nature of these points (and
the surface irregularities), these reflections are added incoherently.
Hence, the total field produced by the incoherent components be-
haves like noise. As a consequence of the central limit theorem, this
total incoherent signal can be modeled as a random Gaussian process
with zero mean [4], increasing the additive sensor noise [6].

In the presence of a reflecting surface, the measurement model
for a vector-sensor array becomes

y(t) =
�
A(θt) + ejδA(θi)Ss

�
St

�
I2 + ejδSs

�

·ξ(t − τ)ejωDt + e(t), t = 1, . . . , N, (5)

where θi = [φ, ψ] is the vector of the interference bearing angles, ψ
is the elevation angle of the interference, also known as the grazing
angle. Note that both the target and the interference have the same
azimuth φ. The angle δ is the phase shift due to the length difference
between the direct radar-target path and the radar-surface-target path.
For the low-grazing-angle case, the phase shift is approximated by
δ ≈ 4πhrht/rg, where hr and ht are the radar and target height,
and rg = r cos ϑ is the ground range. The surface scattering matrix
is Ss = ρs ·diag(γh, γv). The coefficients γh and γv are the Fresnel
reflection coefficients; their expressions can be found in [6]. For

Fig. 1. Four-component signal multipath model.

the low-angle propagation problem over a sea-surface, they can be
approximated by γh = γv ≈ −1. The coefficient ρs represents a
reduction in the magnitude of the reflected field due to the surface
roughness [6]. I2 is the 2 × 2 identity matrix. We assume that hr

and ρs are known.

3. OPTIMAL POLARIZED WAVEFORM DESIGN

The design of the waveform involves selecting the signal envelope
and its polarization, see equation (4). Herein, we consider linear
frequency modulated (LFM) pulses with Gaussian envelope, which
are defined as

s(t) =
�
πη2�−1/4

exp

�
−
�

1

2η2
− jb

�
t2
�

, (6)

where η is the pulse length and b is the frequency sweep rate. In
addition, it is considered that in order to uniquely identify St, the
polarization must vary in time (see [1], [2]). Bellow, we present two
different approaches for designing the polarized waveform.

Scheme A. Two consecutive polarized pulses with fixed duration η
and frequency sweep rate b are transmitted. The polarization para-
meters α and β change for each pulse:

ξ(t) = s(t)Q(α1)w(β1) + s(t − Ts)Q(α2)w(β2),

where Ts = 7.4η is the effective pulse length, chosen to be the time
interval over which the signal amplitude is greater than 0.1% of its
maximum value.

Scheme B. Two simultaneous pulses are transmitted using the com-
ponents of the vector signal ξ(t); method known as dual signal trans-
mission [3]. The parameters η and b of each vector-signal compo-
nent must be different in order to generate time-variant polarization:

ξ(t) =

�
s(t; ηh, bh)
s(t; ηv, bv)

�
.

For a fair comparison, the signal to noise ratio, which we de-
fine as SNR=

� ‖ξ(t)‖2dt/σ2, is assumed to be constant for all the
cases and waveform configurations.

Note that the current research can be extended by using wave-
form libraries instead of a single form of pulse, see for example [9].

3.1. Cost Function

To calculate the optimal transmitted signal parameters, it is neces-
sary to define a cost function or a performance measure. The CRB is
a universal lower bound on the variance of all unbiased estimators of
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a set of parameters and provides a measure of potential performance
attainable by the system. This bound is defined as [10]

CRB(ν) =

�
−E

�
∂ ln p(y)

∂ν

∂ ln p(y)

∂νT

��−1

, (7)

where p(y) is the joint probability density function of the N mea-
surements described in Section 2, ν = [φ, ϑ, r, ωD, s]T is the vector
of target parameters, and the scattering coefficients are represented
by s = [Re{shh, shv, svv}, Im{shh, shv, svv}]. Assuming that the
noise e(t) is independently and identically complex Gaussian dis-
tributed with zero mean and known covariance σ2I6M , then the
measurements y(t) are also Gaussian distributed. The derivation
of a CRB expression can be considered arduous, but straightforward
for Gaussian models; due to space constrains, it is not shown in this
paper.

The aim of our optimal design is to minimize the estimation er-
ror of the target parameters. Hence, the cost function should be an
operator summarizing the CRB matrix in a scalar value. Different
optimization measures have been proposed based on this concept.
D-optimality uses the determinant of the CRB [11] and A-optimality
employs the trace [12]. However, these measures cannot be applied
for our design problem. Due to the different physical nature of the
target parameters, the variance of their estimators may differ in sev-
eral orders of magnitude and units.

We apply a criterion that consists of a weighted sum of the CRB
of each target parameter:

J = cφCRBφ + cϑCRBϑ + crCRBr

+cωDCRBωD + cstr(CRBs), (8)

where “tr” is the trace operator and the c variables are the weighting
coefficients. In our problem, the c coefficients are intended to weight
the CRB of the different target parameters.

In order order to evaluate the cost function J and the CRB, it is
required to know the value of the target parameters. We assume that
those parameters are estimated and provided by a tracking filter of
the radar system as a prediction of the next target state.

4. NUMERICAL EXAMPLES

The simulation setup to test the proposed waveform design schemes
consists of a single target characterized by scattering coefficients
shh = 0.8 − j0.1, shv = j0.2 and svv = 0.5, Doppler shift
ωD = 1KHz, range r = 10km, and azimuth φ = 45◦. The el-
evation is ϑ = 15◦ and ϑ = 0◦ for each of the following exam-
ples. The receiver is an array of two vector sensors located along the
y-axis, separated by 0.5λ (λ = 0.3m). For the LFM signals applied
on Scheme A, the duration parameter is η = 1µs, the frequency
rate is b = 135 · 109s−2 (bandwidth B = 1MHz), and the polar-
ization angles belong to the following intervals α ∈ [−90◦, 90◦]
and β ∈ [−45◦, 45◦]. For Scheme B, the signals are constrained to
η ∈ [0.5, 2]µs and b ∈ [13.5, 1350] · 109s−2 (maximum bandwidth
B = 20MHz).

Example 1. We first test the proposed waveform schemes for the
case of a high-elevation target.

Scheme A is a generalization of the method used by conven-
tional radars, which transmit pulses with fixed orthogonal polariza-
tion. Usually, they transmit linearly polarized signals (β1 = β2 =
0◦) with horizontal (α1 = 0◦) and vertical (α2 = 90◦) polariza-
tion orientation. However, this arbitrary selection of the signal ori-
entations may not be optimal. Fig. 2 shows the optimization cost
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Fig. 2. Design cost as a function of the orientation angle of two or-
thogonally and linearly polarized pulses for the high-elevation target,
in Example 1.

function J for two orthogonally and linearly polarized pulses as a
function of their orientation angle, i.e. α1 = α and α2 = α + 90◦.
There is 4.5dB of performance difference between the worst and best
signal orientation. More significant improvement can be achieved
by removing the linear and orthogonal constrains. We have found
an improvement of 10dB with respect to the worst case shown in
Fig. 2 when the polarization of the pulses is given by α1 = −1◦,
α2 = 46◦, β1 = 26◦, and β2 = −42◦.

For Scheme B, the optimal parameters that minimizes the cost
function are ηh = 2µs, ηv = 2µs, bh = 13.5 · 109s−2 and bv =
1350 · 109s−2. The cost function for this set of parameters is 6dB
higher than the optimal waveform provided by Scheme A.

Example 2. The former simulations are repeated for the case of a
low-grazing-angle target. It assumed that the radar and target heights
are hr = ht = 50m, and the sea state is such that ρs = 0.7.

Fig. 3 shows that the performance difference between the worst
and best polarization orientation for linearly polarized signals is 2.3dB.
The optimal parameters provided by Scheme A are α1 = 0◦, α2 =
−4◦, β1 = 5◦, and β2 = −12◦, leading to a reduction of 6.5dB
of the cost function with respect the worst case shown in Fig. 3.
For Scheme B, the best set of parameters is ηh = 2µs, ηv = 2µs,
bh = 13.5 · 109s−2 and bv = 1350 · 109s−2; the cost function is
4.5dB higher than the optimal signal resulted from Scheme A.

Discussion. Studying the CRB of the target parameters separately,
we found that each scheme is capable of improving the estimation
accuracy of the various parameters in different magnitude. Hence,
each scheme may be used for different applications, depending on
which parameter is considered more important. Table 1 shows the
CRB of the target parameters for the optimal waveforms which re-
sult from Schemes A and B. The values on the table are relative to
the worst case of linearly polarized waveforms shown in Fig. 2 and
Fig. 3 for Examples 1 and 2, respectively. Scheme B yields an excel-
lent performance on the estimation of the target range by choosing
the optimal time-frequency parameters of the signal. On the other
hand, Scheme A has the freedom to select the polarization match-
ing the target aspects; hence it is able to improve the estimation of
the scattering coefficients. In addition, it provides better estimation
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Fig. 3. Design cost as a function of the orientation angle of two
orthogonally and linearly polarized pulses for the low-grazing-angle
target, in Example 2.

Example 1

CRBφ CRBϑ CRBr CRBωD CRBs
Scheme A +0.5 +0.5 +2.3 +13.3 +10.8
Scheme B -5.3 -0.2 +19.7 +3.0 +4.2

Example 2

CRBφ CRBϑ CRBr CRBωD CRBs
Scheme A +2.3 +2.5 +3.7 +14.2 +2.4
Scheme B -0.2 -0.2 +17.2 +2.7 -0.2

Table 1. Cramér-Rao bound on the target parameters for the optimal
wavefrom resulting from Schemes A and B, for Examples 1 and 2,
with respect to the worst case shown in Fig. 2 and Fig. 3, respectively
(units:dB).

of the Doppler shift than Scheme B, due to the latter is forced to
reduce the duration of one of its pulses to generate the polarization
diversity. It is also noted that Scheme A gives 2.5dB of performance
improvement on the estimation of the bearing angles for the case of
low-grazing-angle target.

5. CONCLUSIONS

We have considered the problem of selecting radar polarized wave-
forms to decrease the estimation error of the target parameters, i.e.
bearing angles, range, Doppler shift, and scattering matrix. We stud-
ied two different problems; first, we addressed the case of a high-
elevation target, free of interferences and clutter returns, and second,
the problem of a low-grazing-angle target in the presence of multi-
path interference. We proposed two different approaches for design-
ing the polarized waveforms. One was shown to yield high accuracy
in estimating the target range, whereas the other proved to be more
effective in improving the accuracy of the scattering coefficient and
Doppler shift estimates.

In our future work, we will develop adaptive algorithms for joint
estimation of the target parameters and dynamic optimal design of

the transmit polarized signals.
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