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ABSTRACT
The time-variation due to Doppler scaling effects, coupled

with scattering due to multipath propagation, can severely

limit the performance of wideband systems. In this paper,

we examine the dynamic configuration of transmitted wave-

forms for agile sensing to increase tracking performance in

wideband environments. Using wideband frequency mod-

ulated waveforms, we present an algorithm for predicting

the mean square tracking error and selecting the waveform

that minimizes it in a target tracking application with a non-

linear observations model. The algorithm is based on the

Cramér-Rao lower bound on the measurement errors that

is computed using the wideband ambiguity function. Us-

ing simulations, we demonstrate the improved performance

provided by scheduling over fixed configurations.

1. INTRODUCTION

In target tracking systems, the advent of waveform-agile

sensors, that can shape their transmitted waveforms on-the-

fly, has allowed the consideration of adaptive waveform con-

figuration schemes [1]-[3]. These schemes seek the best

suited waveform for each transmission so as to obtain in-

formation that best improves the estimate of the target state.

The resulting system level optimization yields better track-

ing performance than when the sensors and the tracker are

optimized independently.

Two simplifications are commonly assumed in the sce-

narios studied in the recent past: linear observation mod-

els and narrowband signal processing. Linear observation

models permit the use of the Kalman filter as the tracker

and, consequently, the derivation of optimal solutions to the

waveform scheduling problem [1],[2]. The introduction of

a nonlinear observations model necessitates the use of sub-

optimal filtering methods and significantly complicates the

dynamic waveform selection problem [4]. For narrowband

processing, approximations are made to the changes caused

by the environment on the transmitted waveforms. The ef-

fect of the relative motion between the target and the obser-
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vation platform manifests itself as a Doppler scaling (time

dilation/ compression) on the waveform. Transmitted wave-

forms are treated as narrowband signals if this effect may be

approximated by a simple frequency shift. The approxima-

tion is valid only when the time-bandwidth product (TB) of

the waveform satisfies TB � c/(2ṙ), where c is the velocity

of propagation and ṙ is the range-rate or radial velocity of

the target with respect to the observation platform [5]. In the

case of radar, this condition is easily met as the velocity of

propagation is very large (c ≈ 3x108 m/s). In sonar appli-

cations however, c ≈ 1500 m/s, and with velocities on the

order of 10 m/s, we require TB � 75 to justify the narrow-

band assumption. As the TB of sonar signals is generally

much higher than 100, wideband processing has to be used.

In this paper, we consider adaptive sensor configuration

for wideband environments. We develop a configuration al-

gorithm that utilizes the wideband ambiguity function of the

transmitted waveform to dynamically select the signal that

minimizes the predicted mean squared error (MSE) in the

estimate of the target’s range and range-rate. We demon-

strate the performance of this computationally efficient al-

gorithm using waveforms with varying time-frequency sig-

natures.

2. WIDEBAND SIGNAL MODEL

We consider the problem of two sensors tracking a target in

a wideband environment using wideband signals. Specifi-

cally, at each sampling instant, sensors A and B transmit a

frequency-modulated (FM) chirp waveform

s(t) = a(t) exp {j2π(bξ(t/tr) + fct)}, (1)

where ξ(t/tr) is a real valued phase function, b is the chirp

rate, tr > 0 is a normalization time value, and fc is the

carrier frequency. The amplitude envelope is given by

a(t) =

⎧⎪⎨
⎪⎩

α
tf

(t − T
2 − tf ), −T/2 − tf ≤ t < −T/2

α, −T/2 ≤ t < T/2
α
tf

(T
2 + tf − t), T/2 ≤ t < T/2 + tf ,

where α ∈ � is chosen such that s(t) in (1) has unit energy.

The finite rise/fall time of a(t) is tf � T/2. Note that we
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use a trapezoidal envelope in (1) to permit the evaluation

of the Cramér-Rao lower bound (CRLB) in Section 3. The

waveform transmitted by sensor i = A, B, at time k, is pa-

rameterized by θi
k = [ξi

k λi
k bi

k]T, where λ = T + 2tf is its

duration.

When the transmitted signal reflects off a target, it un-

dergoes a Doppler scaling depending on the target’s veloc-

ity, and it is received after a time delay proportional to the

target’s range [5]. The received signal is given by

r(t) = βs (σt − τ) + n(t) (2)

where n(t) is the added noise, β is a complex constant ac-

counting for attenuation and reflection, σ = (c − ṙ)/(c +
ṙ) > 0 is the Doppler scale, and τ = 2r/(c+ ṙ) is the delay.

The range and range-rate of the target are r and ṙ, respec-

tively. Since ṙ � c, we have r ≈ cτ/2 and ṙ ≈ c(1−σ)/2.

3. WIDEBAND ENVIRONMENT MODEL

We seek to recursively estimate the two-dimensional (2-D)

motion of a target described by Xk = [xk yk ẋk ẏk]T,

where xk and yk correspond to the position, and ẋk and

ẏk to the velocity at time k in Cartesian coordinates. The

observations of the target state consist of range and range-

rate measurements, obtained from the two sensors. At time

k, the sensors measure h(Xk) = [rA
k ṙA

k rB
k ṙB

k ]T, where

ri
k =

√
(xk − xi)2 + (yk − yi)2

ṙi
k = (ẋk(xk − xi) + ẏk(yk − yi))/ri

for i = A, B, and sensor i is located at (xi, yi). The target

dynamics are modeled by a linear, constant velocity model.

The state-space model is then given by

Xk = F Xk−1 + Wk, Zk = h(Xk) + Vk , (3)

where Zk represents the observation. The process and ob-

servation noise are modeled by the uncorrelated Gaussian

sequences, Wk and Vk, respectively. The constant matrix

F and the process noise covariance Q are given by

F =

⎡
⎢⎢⎣

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, Q = q

⎡
⎢⎢⎢⎣

δt3

3 0 δt2

2 0
0 δt3

3 0 δt2

2
δt2

2 0 δt 0
0 δt2

2 0 δt

⎤
⎥⎥⎥⎦

where δt is the sampling interval and q is a constant.

The observation noise covariance depends on the reso-

lution properties of the transmitted waveform and is given

by N(θk). Here, θk = [θA
k

T

θB
k

T

]T is a combined waveform

parameter vector for both sensors at time k. To obtain this

matrix, we note first that the estimation of the parameters

τ and σ, of the received signal in (2), is performed by fil-

ters matched to several possible values of delay and Doppler

scale. The magnitude squared output of the filters provides

the correlation between the received and transmitted signals

at several points in the delay-Doppler scale plane. The fil-

ter outputs thus depend upon the correlation properties of

the signal with delayed and dilated/compressed versions of

itself. This correlation is characterized by the wideband am-

biguity function (WAF) [6]

WAFs(τ, σ) =
√

σ

∫ ∞

−∞
s(t)s∗(σt − τ)dt.

Under the condition of high signal-to-noise ratio (SNR), the

sidelobes of the WAF may be neglected and the location

of its peak can provide an estimate of τ and σ. To obtain

the CRLB on the errors of this estimation process, we first

obtain the 2x2 Fisher Information matrix I whose elements

are given by the second derivatives of the WAF at the true

target delay and Doppler scale. For the waveform in (1),

these elements are given by [7]

I1,1 =
∫ λ/2

−λ/2

(ȧ2(t) + a2(t)Ω2(t))dt −
[∫ λ/2

−λ/2

a2(t)Ω(t)dt

]2

I1,2 =
∫ λ/2

−λ/2

t(ȧ2(t) + a2(t)Ω2(t))dt −
∫ λ/2

−λ/2

a2(t)Ω(t)dt ·
∫ λ/2

−λ/2

ta2(t)Ω(t)dt

I2,2 =
∫ λ/2

−λ/2

t2(ȧ2(t) + a2(t)Ω2(t))dt −
[∫ λ/2

−λ/2

ta2(t)Ω(t)dt

]2

− 1
4

,

where Ω(t) = 2π(b d
dtξ(t/tr) + fc), and I2,1 = I1,2. In

a matched filter receiver, the maximum likelihood estimates

are jointly asymptotically Gaussian with covariance that ap-

proaches the CRLB [5]. Since we consider high SNR, per-

fect detection and no clutter, we assume that the receiver

achieves the CRLB. For sensor i, the CRLB on the estima-

tion of [rk ṙk]T is then given by N(θi
k) = ΓIi

k
−1ΓT/ηi

k

where Γ = diag(c/2, c/2) and ηi
k is the SNR. Furthermore,

assuming that the measurement noise at each sensor is inde-

pendent, N(θk) = diag(N(θA
k ), N(θB

k )).

4. DYNAMIC WAVEFORM SELECTION

The dynamic selection of the transmission waveform at time

k is performed by predicting the MSE based on the current

state estimate and the state-space model (3), and searching
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Fig. 1. Averaged MSE when both sensors use HFM chirps.

The fixed waveforms had a frequency sweep of 2 kHz.

for the waveform that minimizes it. We define the cost func-

tion as

J(θk) = EXk,Zk|Z1:k−1

{
(Xk − X̂k)T Λ(Xk − X̂k)

}
,

(4)

and seek the value of θk that minimizes it. Here, E{·} is

the expectation over the predicted states Xk and observa-

tions Zk, and X̂k is the estimate of Xk given the sequence

of observations from 1 to k. Λ is a weighting matrix that

ensures that the units of the cost function are consistent.

Due to the nonlinear relationship between the observa-

tions and the target state, we use a particle filter to recur-

sively estimate the probability distribution of the state given

the sequence of observations, p(Xk|Z1:k, θ1:k). The con-

ditional mean of this density yields the state estimate. The

cost function in (4) cannot be computed in closed form since

the estimate X̂k can only be obtained by simulation. Al-

though it is possible to compute the cost by Monte Carlo

methods, it is computationally expensive. Instead, we use a

method based on the unscented transform (UT) [8] to pre-

dict the MSE and perform a grid search. The search progres-

sively explores finer regions of the space of allowable wave-

forms and waveform parameters to determine the waveform

that minimizes the predicted MSE [4].

Specifically, at time k − 1, the UT is used to obtain the

predicted covariance matrices of the state and the observa-

tion as Pxx(k|k − 1) and Pzz , respectively, and their cross

covariance Pxz . For the lth waveform with parameter vector

θk(l), l = 0, . . . , L − 1, the updated predicted MSE is

P l
xx(k|k) = Pxx(k|k − 1) − Pxz [Pzz + N(θk(l))]−1

P T

xz,

and J(θl
k) is approximated by the trace of ΛP l

xx(k|k). The

configuration θk(l) that minimizes the cost function is then

applied to the sensors to obtain the observation Zk.
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Fig. 2. Dynamic selection of the frequency sweep ∆i
f , when

both sensors i = A, B use HFM waveforms. The duration

selected by both sensors at each sampling instant was 0.3 s.

5. SIMULATIONS AND DISCUSSION

The simulation study to test the performance of the wave-

form scheduling algorithm in a wideband environment in-

volved two waveform-agile sensors tracking an underwater

target moving in 2-D, using range and range-rate measure-

ments. The carrier frequency of the transmitted waveform

was fc = 25 kHz and the waveform duration ranged within

0.01 s ≤ λ ≤ 0.3 s. The SNR at sensor i at time k was deter-

mined according to ηi
k = (r0/ri

k)4, where r0 = 500 m was

the range at which 0 dB SNR was obtained. We considered

a number of FM chirps with different time-frequency sig-

natures that are specified by their phase functions, ξ(t/tr)
in Table 1 with tr = 1. We define the frequency sweep to

be ∆i
f = |Ωi(λi/2) − Ωi(−λi/2)|, where Ωi(t) is the in-

stantaneous frequency, and limit it to a maximum of 2 kHz.

We fix Ωi(−λi/2) = fc + 2 kHz (downswept chirps) or

Ωi(λi/2) = fc +2 kHz (upswept chirps). We then compute

bi and T i
f in Table 1 for each waveform for any chosen fre-

quency sweep. The sampling interval and the process noise

intensity in (3) were δt = 2 s and q = 0.01, respectively.

The speed of sound in water was taken as c = 1500 m/s.

In the first example, we configured each sensor with the

hyperbolic FM (HFM) waveform and dynamically selected

its parameters (λ and b) for each sensor so as to minimize

the predicted MSE. The actual MSE obtained in tracking a

target, averaged over 500 simulations, is shown in Fig. 1.

For comparison, we also show the MSE that was obtained

when the sensor configurations were fixed at the minimum

or maximum durations and the maximum frequency sweep.

The improvement in performance in using dynamic parame-

ter selection is apparent. Fig. 2 shows the dynamic selection

of the frequency sweep that results from the selection of the

chirp rate bi by the configuration algorithm. Note that the
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Fig. 3. Comparison of averaged MSE using various wave-

forms when the allowed frequency sweep is 1 kHz (dotted)

and 2 kHz (solid).

frequency sweep chosen by dynamically selecting the chirp

rate is much less than the maximum of 2 kHz. The pulse

duration was always selected as the maximum of 0.3 s.

In the second simulation example, we permitted the sen-

sors to dynamically select the phase function from among

the options in Table 1. We allowed the waveform selection

to choose between hyperbolic, exponential, and power FM

chirps with κ = 2 and 2.6, in addition to choosing the dura-

tion λ and chirp rate b so as to minimize the predicted MSE.

Fig. 3 plots the averaged MSE when dynamic parameter

selection is used with FM waveforms with different phase

functions. Note that the power FM (PFM) chirp with κ = 2
constitutes a linear FM chirp. From Fig. 3, the PFM chirp

with κ = 2.6 performs the best and we should expect that it

will always be chosen as it was indeed observed.

The HFM chirp yielded the poorest performance as seen

in Fig. 3. It has been shown that the HFM chirp is optimally

Doppler tolerant [7]. This also implies that it is minimally

Doppler sensitive and should compare poorly with the track-

ing performance of other FM waveforms.

As the variance of the range-rate estimation errors de-

pends inversely on the pulse duration, the algorithm attempts

to minimize these errors when the maximum allowed pulse

length is used. On the other hand, range estimation errors

can be minimized by using the maximum TB. However,

the correlation between the errors increases with increasing

Waveform Phase Function, ξ(t) in (1)

Power FM (PFM) t/Tf + (t + λ/2)κ/κ

Hyperbolic FM (HFM) ln(t + Tf + λ/2)

Exponential FM (EFM) exp{−(t + λ/2)/Tf}

Table 1. FM waveforms used in the configuration.

frequency sweep, thereby reducing the ability of the wave-

form to estimate range and range-rate simultaneously. Thus,

there is a tradeoff in the choice of frequency sweep and this

is reflected in the selections made by the configuration algo-

rithm as it responds to the tracker’s current estimate of the

target state. The performance also improves with increasing

frequency sweep.

6. CONCLUSION

The requirement to utilize wideband processing methods is

especially acute in applications where the velocity of propa-

gation of the waveform is low and its time-bandwidth prod-

uct is large. The optimization of tracking systems is further

complicated by nonlinear observation models that necessi-

tate sub-optimal filters. In this paper, we presented an al-

gorithm to configure waveform-agile sensors on-the-fly to

reduce the tracking MSE. The algorithm uses the CRLB to

determine the effect of choosing a particular waveform on

the tracking performance, while the UT is used to compute

the MSE efficiently. The configuration algorithm searches

the available space of waveforms to find the one that yields

the lowest predicted MSE. We implemented a simulation

study using FM waveforms with different time-frequency

signatures. The results indicate that dynamic sensor config-

uration provides improvements in performance over fixed

configurations.
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