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ABSTRACT

Constant amplitude zero autocorrelation (off the dc compo-

nent) waveforms are constructed. These are called CAZAC

waveforms. In the d-dimensional case they consist of N vec-

tors, where N is given, and N is generally greater than d. The

constructions are algebraic and have been implemented in

user friendly software. They have the added feature that they

are a spanning set for all d-dimensional signals. As such, and

for N large, they are numerically stable in the presence of ma-

chine imperfections and they give good signal reconstruction

in the presence of various noises. The one dimensional case

provides effective thresholding to compute doppler shifts.

1. INTRODUCTION

We shall analyze a certain class of unimodular low correla-

tion waveforms, and indicate the role they play in a multi-

function environment associated with the theory of frames. In

fact, the specific waveforms with which we deal are of finite

length and have 0-autocorrelation off of the dc- component.

Such waveforms are referred to as CAZAC waveforms, viz.,

Constant Amplitude Zero Autocorrelation. There is an ex-

tensive literature on CAZACs because of the importance of

such waveforms in communications and coding theory, e.g.,

[1, 2, 3, 4, 5, 6]. Our own interest is based on the impor-

tance of waveform design in several aspects of modern radar

[7, 8, 9] .

Generally, there are distinct CAZAC waveforms of any

given length K, and different constructions of CAZACs may

yield different applicability. We begin in Section 2 by defin-

ing the autocorrelation and crosscorrelation of signals of fi-

nite length K, as well as the ambiguity function of a given

waveform of finite length. It is noted that the usual notion

of the ambiguity function on the real line R is the analogue

of our discrete definition. Then, properties of CAZACs are

recorded including the important fact that u is CAZAC if and

only if its discrete Fourier transform U is CAZAC. In partic-

ular, CAZAC waveforms are broadband, and the best finite

energy approximants by waveforms of smaller bandwidth are

products of U by characteristic functions. The rationale for

CAZACs is stated, including its role in effective matched fil-

tering. The CAZACs we have constructed, and whose soft-

ware [10] we have made available, have the property that K
is not square-free, and we give a typical example.

Section 3 deals with a pristine form of the Doppler effect,

and we construct a statistic in order to compute frequency

shifting and, therefore, target speed. This statistic is not only

elementary to explain and useful and accurate, it is also based

on some intriguing arithmetic complexity. We state a funda-

mental theoretical result as well as examples.

We give some basic results from the theory of frames

in Section 4 as a prelude to our multifunction vector-valued

frame waveform problem. This problem is inspired by the fact

that CAZAC waveforms can be generalized as vector-valued

functions defined on {0, 1, . . . , K − 1} and taking values in

the unit sphere Sd−1 of d-dimensional Euclidean space R
d.

For applications in which numerical stability and resilience

to machine error are important, we take K > d. We were

also motivated to pose the multifunction vector-valued frame

waveform problem because of our formulation of the notion

of generalized matched filtering.

2. CAZAC WAVEFORMS

Let em(n) = e
−2πimn

K and ZK = {0, 1, . . . , K−1}. Let u, v :
ZK → C be K-periodic waveforms. The crosscorrelation of

u and v is

Cu,v(m) =
1
K

K−1∑
k=0

u(m + k)ν(k)

for m = 0, 1, . . . , K − 1.
The autocorrelation of u is its crosscorelation with itself:

Au(m) = Cu,u(m).
The ambiguity function of u, A : ZK × ZK → C, is

defined as

Au(j, k) = Cu,uek
(j) =

1
K

K−1∑
m=0

u(m + j)u(m)e
2πimk

K .
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It is natural to refer to A as the ambiguity function of u, since

in the usual setting on the real line R, the analogue ambiguity

function is

Au(t, γ) =
∫

bR

U(ω − γ

2
)U(ω +

γ

2
)e2πit(ω+ γ

2 )dω

=
∫

R

u(s + t)u(s)e2πisγds,

where U is the Fourier transform of u : R → C, R̂ is R

considered as the spectral domain, and the L2 norm (finite

energy) of u is designated by ‖u‖2.

A K-periodic waveform u is a constant amplitude zero
autocorrelation waveform (CAZAC) if |u(m)| = 1, m =
0, 1, . . . , K − 1, and its autocorrelation Au(m) is 0 for m =
1, . . . , K − 1 (see Fig. 1). There are different constructions

of different CAZAC waveforms resulting in different behav-

ior vis à vis Doppler, additive noises, and approximation by

bandlimited waveforms.

Properties of CAZAC waveforms

• u CAZAC ⇒ u is broadband (full bandwidth).

• u CA ⇐⇒ DFT of u is ZAC off dc. ( DFT of u can

have zeros)

• u CAZAC ⇐⇒ DFT of u is CAZAC.

Rationale for CAZAC waveforms
CA allows transmission at peak power. In particular, the

system does not have to deal with the suprise of greater than

expected amplitude. Further, distortion amplitude variations

can be detected using CA. In fact, with CA, amplitude varia-

tions during transmission due to additive noise can be theo-

retically eliminated at the receiver without distorting the mes-

sage.

Example of CAZAC Waveform K = 75 :
u(x) = (1, 1, 1, 1, 1, 1, e2πi 1

15 , e2πi 2
15 , e2πi 1

5 , e2πi 4
15 , e2πi 1

3 ,

e2πi 7
15 , e2πi 3

5 , e2πi 11
15 , e2πi 13

15 , 1, e2πi 1
5 , e2πi 2

5 , e2πi 3
5 , e2πi 4

5 ,
1, e2πi 4

15 , e2πi 8
15 , e2πi 4

5 , e2πi 16
15 , e2πi 1

3 , e2πi 2
3 , e2πi, e2πi 4

3 ,
e2πi 5

3 , 1, e2πi 2
5 , e2πi 4

5 , e2πi 6
5 , e2πi 8

5 , 1, e2πi 7
15 , e2πi 14

15 ,
e2πi 7

5 , e2πi 28
15 , e2πi 1

3 , e2πi 13
15 , e2πi 7

5 , e2πi 29
15 , e2πi 37

15 , 1,
e2πi 3

5 , e2πi 6
5 , e2πi 9

5 , e2πi 12
5 , 1, e2πi 2

3 , e2πi 4
3 , e2πi·2, e2πi 8

3 ,
e2πi 1

3 , e2πi 16
15 , e2πi 9

5 , e2πi 38
15 , e2πi 49

15 , 1, e2πi 4
5 , e2πi 8

5 ,
e2πi 12

5 , e2πi 16
5 , 1, e2πi 13

15 , e2πi 26
15 , e2πi 13

5 , e2πi 52
15 , e2πi 1

3 ,
e2πi 19

15 , e2πi 11
5 , e2πi 47

15 , e2πi 61
15 ).

3. A DOPPLER STATISTIC

In classical elementary matched filtering, an electromagnetic

waveform u is emitted (with carrier) from a radar. The ideal

reflected signal from a target is v(t) = au(t − t0), a > 0
fixed; and t0 is to be computed. The time t0 is proportional

to target distance. If, in fact, v(t) = au(t − t0) for some t0,

then

Cv,u(t0) = sup
t

|Cv,u(t)|.

Cv,u is L2(R) crosscorrelation, and the maximum system re-

sponse is given by the matched filter aû(γ)e−2πit0γ . In the

digital case, CAZACs arise since travel time depends on cross-

correlation peak, and sharp peaks obviate distortion and inter-

ference in the received waveform.

There is a fundamental Doppler tolerance problem: con-

struct a statistic to determine an unknown Doppler frequency

shift. We also want to solve this for multiple frequencies.

In order to address this problem we have the following

result [11].

Theorem 1 Let K = M ×N ×N and let k = 0, 1, . . . , K −
1. The quantity |Cu,uek

(·)| is N -periodic as a function of
k, i.e., there are at most N different graphs of |Cu,uek

(·)|.
Also, given k, |Cu,uek

(j)| = 0 for all j �= (−k) mod MN .
Further,

∑K−1
j=0 |Cu,uek

(j)|2 = 1.

Remarks The Doppler statistic |Cu,uek
(j)| is excellent

and provable for detecting deodorized Doppler frequency shift

[11] (see Fig. 2). Also, if one graphs only Re A(j, k) =
Re Cu,uek

(j) then the statistic sometimes fails. Further, we

point out that there are unresolved “arithmetic” complexities

which are affected by waveform structure and length; and that

our noise analysis is ongoing.

4. FRAMES AND MULTIFUNCTION PROBLEM

Given H = R
d or H = C

d, N ≥ d. {xn}N
n=1 ⊆ H is a finite

unit norm tight frame (FUN-TF) if each ‖xn‖ = 1 and, for

each x ∈ H ,

x =
d

N

N∑
n=1

〈x, xn〉xn.

A sequence {xn}N
n=1 ⊆ H is an A-tight frame if {xn}N

n=1

spans H and A‖x‖2 =
N∑

n=1

|〈x, xn〉|2 for each x ∈ H .

Recent applications of FUN-TFs
FUN-TFs are surprisingly applicable. They have arisen

in dealing with the robust transmission of data over erasure

channels such as the internet [12, 13, 14], and in both multiple

antenna code design for wireless communications [15] as well

as multiple description coding [16, 17, 18]. There are also

recent applications of FUN-TFs in quantum detection, Σ−∆
quantization, and Grassmanian “min-max” waveforms, e.g.,

[19].

Rationale for frames
Frames give redundant signal representation to compen-

sate for machine imperfections, to ensure numerical stability,

and to minimize the effects of noise.

Examples of FUN-TFs

• Orthonormal bases, the vertices of Platonic solids, and

kissing numbers (from sphere packing and error cor-

recting codes) are FUN-TFs.
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• (DFT FUN-TFs) N ×d submatrices of the N ×N DFT

matrix are FUN-TFs for C
d. These play a major role in

finite frame Σ∆-quantization. The vectors

xm =
1
5
(e2πim 1

8 , e2πim 2
8 , e2πim 5

8 , e2πim 6
8 , e2πim 7

8 ),

m = 1, . . . , 8,

form a FUN-TF for R
5.

The frame force
The frame force F : Sd−1×Sd−1 \D → R

d is defined as

F (a, b) = 〈a, b〉(a− b), where Sd−1 is the unit sphere in R
d.

F is a (central) conservative force field. The total potential

energy for the frame force of {xn}N
n=1 ⊆ Sd−1 is

P =
N∑

m=1

N∑
n=1

|〈xm, xn〉|2.

Let N ≥ d. It can be shown that the minimum value of P for
the frame force F and N variables is N

d ; and the minimiz-
ers of P are precisely all of the FUN-TFs of N elements in
Sd−1[20].

Because of the aforementioned applications it is important

to have a reliable, systematic way of computing these frames

Multifunction vector-valued frame waveform problem
Construct, code, and implement (user-friendly) N -periodic

waveforms (N ≥ d)

u : ZN → Sd−1 ⊆ R
d (or C

d),
n → un = (un(1), un(2), . . . , un(d)),
n = 0, 1, . . . , N − 1

which are FUN-TFs and CAZAC, i.e., each

x =
d

N

N−1∑
n=0

〈x, un〉un and Au(m) =
1
N

N−1∑
j=0

〈um+j , uj〉 = 0,

m = 1, . . . N − 1.
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tized frame expansions with erasures,” Appl. Comput.
Harmon. Anal., vol. 10, no. 3, pp. 203–233, 2001.

[14] R. B. Holmes and V. I. Paulsen, “Optimal frames for

erasures,” Linear Algebra Appl., vol. 377, pp. 31–51,

2004.

[15] B. M. Hochwald, T. L. Marzetta, T. J. Richarson,

W. Sweldens, and R. L. Urbanke, “Systematic design

of unitary speace-time constellations,” IEEE Trans. In-
form. Theory, vol. 46, no. 6, pp. 1962–1973, 2000.

[16] T. Strohmer and R. W. Jr. Heath, “Grassmannian frames

with applications to coding and communication,” Appl.
Comp. Harmon. Anal., vol. 14, no. 3, pp. 257–275,

2003.

[17] V. K. Goyal, J. Kovac̆ević, and M. Vetterli, “Multiple
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Fig. 2. Doppler statistic for CAZAC with K = 75; (a) - (e)

graphs of |Cu,uek
(·)| for k = 1, . . . , 5, respectively.
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