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ABSTRACT

The acquisition of brain images in fMRI yields rich topo-
graphic information about the functional structure of the
brain. However, these descriptions are limited by strong
inter-subject variability. A recent approach to represent the
gross functional architecture across the population as seen
in fMRI consists in automatically defining accross-subjects
brain parcels. This technique yields large-scale inter-subject
correspondences while allowing some spatial relaxation in
the alignment of the brains. We address here the open ques-
tion of an optimal parameterization (number of parcels) of
brain parcellations using information theoretic criteria and
cross-validation. Moreover, a finer analysis of variance com-
ponents enables us to better characterize intra- and inter-
subject variability sources in parcellation models.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a recent
modality for the exploration of brain function that produces
activity maps of the whole brain. Neuroscientific inference
proceeds by assessing the presence of a task-related signal
increase at a spatial location, in a group of subjects. To date,
spatial locations are defined as voxel coordinates, which
implies that a spatial realignment of the images is applied
prior to data analysis. One usually applies spatial defor-
mations to the images to coregister anatomical structures of
each subject to a common template [1]. This transformation
makes the strong assumption that the spatial organization
matches the functional one, which disregards the large inter-
subject variability and is compensated by smoothing the
data (smoothing kernel typically around 8-12 mm FWHM).
Yet, inter-subject variability still needs to be better modelled
and understood.

In order to overcome the shortcomings of spatial nor-
malization, Flandin et al [3] have introduced a novel method
of data analysis which divides the brain in many parcels of
homogeneous functional activity and spatial location across

subjects. This accounts for small spatial variation in the po-
sition of the functional activity across subjects. Several al-
gorithms are possible to delineate the parcels. For instance,
a spectral clustering technique was introduced in [7] while
Flandin et al resorted to Gaussian Mixture Model on pooled
(spatial/functional) coordinates.

In this work, we build on the dual nature of the GMM,
which is not only a clustering technique, but also a density
estimation technique. In particular, it enables us to address
some important modelling issues, such as the dimensional-
ity of the model, or the homogeneity of the population.

Choosing the number K of components in the GMM is
somewhat analogous to the choice of the spatial smoothing
kernel generally performed before group analysis in fMRI,
as pointed out in [3]. Intuitively, the more spatial variability
across subjects, the greater the smoothing kernel, and the
smaller the number of parcels. To choose objectively an
adequate number of parcels, we use information theoretic
criteria and cross validation techniques on an fMRI study of
10 subjects, and show converging evidence for K ∼ 500.

2. FEATURE SPACE AND STATISTICAL MODEL

We define the parcels as empirically derived functional mod-
ules, i.e. regions with homogeneous functional activity and
compact spatial layout. Since they are derived from cluster-
ing techniques, it is necessary to use information from both
the spatial and functional domain.

The anatomical information brought in the model con-
sists in the three spatial coordinates τ(v) of each voxel v in
Talairach space (which is the standard referential).

The functional input data comes from a General Linear
Model (GLM) analysis of fMRI datasets [1]. In each sub-
ject, the set of images can be rewritten as a data matrix Y , by
pooling all the voxels along a unique spatial axis. A design
matrix X defines the temporal effects (i.e. stimulus-related
effects) under study, and the GLM proceeds by estimating
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the voxel-based parameters β such that

Y = Xβ + E, (1)

where E represents a residual noise, independent across
voxels but temporally correlated. The GLM algorithm pro-
duces weighted least-squares estimates β̂(v) of the param-
eters for each voxel v, and of their covariance Λ̂(v). In our
framework, we interpret the GLM as a posterior distribution
of the parameters with uninformative (improper) priors 1

P (β(v)|Y (v)) = N (β̂(v), Λ̂(v)). (2)

We now consider the parameters β as functional coordi-
nates of the voxels. Assuming a spatially stationary noise
model, all the matrices Λ(v) are equal up to a multiplicative
factor (Λ̂(v) = σ̂(v)2Λ), which allows us to consider them
as the identity by multiplying the β’s with Λ− 1

2 . The vox-
els of all datasets can be pooled in a single feature space by

forming feature vectors F(v) = (τ, β̂
σ̂ )(v). In order to bal-

ance anatomical and functional information, as well as for
the sake of computation speed, it may be necessary to re-
duce the dimension dF of the functional information to e.g.
dF = 3. We thus perform a Singular Value Decomposi-

tion (SVD) of the functional feature matrix { β̂
σ̂ (v)} pooled

across subjects. The dimension d of the feature space is then
the sum of the spatial and functional ones : d = 3 + dF .

2.1. Statistical model

The feature data F is then submitted to a Gaussian Mixture
Model (GMM). The data is represented by K weighted mul-
tidimensional normal densities, with parameters {µk, Σk}.

p(F(v) = F |ΘK , K) =
K∑

k=1

πkN (F ; µk, Σk), (3)

where the set of parameters to estimate is:

ΘK = {π1, ..., πK−1, µ1, ..., µK , Σ1, ...,ΣK}. (4)

The number ηK of free parameters of the GMM is thus

ηK =

{
K − 1 + K(d(d + 3)/2) for full covariance

K − 1 + 2Kd for diagonal covariance

Thereafter, we force the model to have diagonal covari-
ance and precision matrices. This is an advantage for both
computational (matrix inversibility, computation speed) and
modelling (separability of the model) purposes.

The estimation of ΘK is carried out through a stan-
dard Expectation-Maximisation (EM) algorithm [2]. We

1Rigorously, a Student distribution should be considered, but given the
typically high number of degrees of freedom (ν > 100), this has very little
impact on the following analysis

use simple numerical shortcuts given the amount of data
(N � 5.105 pooled voxels, with d-dimensional features).
Initialization is done with a c-means on the spatial features
only to obtain spatially compact parcels. We noticed em-
pirically that this procedure avoids numerical degeneracies
that are frequent with EM estimations of GMMs.

2.2. Selection of the number of classes

Here, we are interested in determining the value for K, us-
ing either information theoretic criteria or cross-validation.
We simply look at the evolution of the fitting process when
varying the number of clusters (see Fig. 1). Other ap-
proaches, based e.g. on Reversible jump Markov Chain
Monte Carlo techniques [4] would be appropriate, but their
prohibitive computation and storage costs make them in-
tractable for huge datasets. A Variational Bayes approach
to the GMM estimation can also yield an optimal value for
K, that can be well approximated by a BIC criterion [6].
Here, we rely on two criteria to evaluate the fitting process:
the Bayesian Information Criterion (BIC), and the general-
izability of the model (Cross Validation). Let P (F|K) be
the probability that the feature data F is generated from a
model with K components, BIC reads :

−1
2
BIC(K) = log P (F|K) (5)

= log
∫

P (F|Θ, K)P (Θ|K)dΘ (6)

= log P (F|Θ̂K) − ηK

2
log(N) + O(1),

where Θ̂K represents the estimated, locally optimal val-
ues for ΘK . The third equality follows from the so-called
Laplace approximation of the integral in Eq. (6). Then, as-
suming a flat prior over K in a range [1 . . . Kmax], the like-
lihood of the model given the data P (K|F) is proportional
to P (F|K) [5].

In fMRI data analysis, inter-subject variability is promi-
nent. Another way to validate a data model is thus to com-
pare the goodness of fit of a model estimated on (S − 1)
subjects on the data of subject S. More precisely, for s ∈
[1, .., S], we form the datasetF (−s), where the data is pooled
from all subjects excepts s, and estimate the corresponding
parameters Θ̂(−s)

K . Using Eq. (3), we estimate the likeli-
hood of the left-out dataset F (s). When averaged over s,
this yields CV (K).

2.3. A hierarchical approach

In order to gain more insight on the modelling of inter-
subject variability, we can make the distinction between intra-
subject variance, which simply measures the extent of the
parcels in the feature space, and inter-subject variance, which
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Fig. 1. Parcellation of a group of datasets with a GMM
model, for different values of K. (Left) After convergence
of the GMM estimation algorithm, each voxel from each
subject can be assigned to a preferred cluster. This re-
veals different levels of detail according to K(60, 500 or
1000). (Right) The average functional activity associated
with any parcel k is given by µk, which corresponds to a
typical parcel response to the 10 experimental conditions of
the paradigm. Increasing K enhances the functional profile
of each parcel. In the above example, we obtain sharper re-
sponses to the four auditory stimulations. The highlighted
parcels above illustrates an audio-sensitive area.

measures the mismatch of the feature data drawn from dif-
ferent subjects. To this end, we use an empirical Bayesian
formulation of the GMM, in which the prior is the group-
averaged information, and the posterior adapts to each sub-
ject’s data. The implementation relies on Variational Bayes
approximations, which are detailed in [6]. Based on this
formulation, we compute the logarithm Γ(K) of the deter-
minant of the inter-subject covariance, averaged on the K
parcels, and Σ̄(K), which is the parcel- and subject- aver-
aged log-determinant of the intra-subject covariance matri-
ces. We study these quantities as functions of K.

3. RESULTS

We tested the algorithm on a dataset comprising S = 10
subjects who underwent the same fMRI protocol. This pro-
tocol is intended to activate many brain areas related to sev-
eral cognitive functions (motor, audio and video perception,
sentence analysis and computation), thus producing some
kind of functional benchmark. It is a subsample of the data
used in [7], with the same pre-processing and GLM analy-
sis procedures. We applied our model on S fMRI datasets
described above, for values of K ranging from 20 to 1500,

and computed the corresponding BIC and Cross-Validation
criteria.
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Fig. 2. (a) Evolution of -BIC/2 and the CV as functions
of K, for dF = 3. (b) Evolution of the -BIC/2 criterion
when dF varies from 2 (lower one) to 7 (upper one). The
curves are normalized by subtracting the value obtained for
K = 10.

3.1. Analysis with different criteria

Fig. 2(a) shows the evolution of - BIC / 2 as a function of K,
with dF = 3. We observe that the highest values are reached
around K ∈ [500, 700] before decreasing slowly for larger
K. The function CV(K) is similar, with a maximum at
K� ∼ 400 Our results show that an optimal representation
for this 10 subjects-group on this specific paradigm, is ob-
tained with (∼ 500) parcels of approximately 2, 7cm3 each.

3.2. Influence of the input data dimension

The probability distribution of the features F is compound,
with anatomical and functional subspaces endowed with dif-
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Fig. 3. Evolution of the inter- and intra- subject log-variance
when K varies (dF = 3). For the sake of clarity, the curves
have been normalized. Intra-subject variance steadily de-
creases with K, while inter subject variance has a maximum
for K � 250.

ferent statistical characteristics. It is thus important to assess
the impact of the relative amount of anatomical and func-
tional information on the choice of K. Here dF controls the
amount of functional information in the model. In Fig. 2(b),
we present the BIC curves obtained when letting dF vary
from 2 to 7.

As a result, increasing dF yields an increase of the op-
timal K� value. This indicates that the optimal description
level depends upon the amount of information available for
the characterization of different modules.

3.3. Analysis of the variance components

The quantities Γ(K) and Σ̄(K) are shown in Fig. 3 for
various values of K, and dF = 3.

This shows that Σ̄(K) steadily decreases with K, which
reflects the fact that the spread of the components in the fea-
ture space is reduced when K increases. More interestingly,
the inter-subject variance first increases, reaches a maxi-
mum for K � 250, and decreases afterwards. This result,
which is reproducible across different parametric settings of
the VB estimation algorithm (not shown), implies that sit-
uations where K < 200 are suboptimal from a modelling
point of view: using low K, partial volume effects domi-
nate, and inter-subject variability is under-estimated. The
fact that Γ(K) decreases for K > 250 indicates that finer
across-subjects correspondences can always be found when
one models the data with higher precision, which was not
guaranteed. However, this effect is not sufficient to compen-
sate the penalty terms of the BIC criterion, nor to guarantee
generalizability of the parcellation model to new subjects.

4. DISCUSSION AND CONCLUSION

We addressed here the open problem of most adequate spa-
tial level of description for fMRI data in group analysis.
From our results K � 500 can be viewed as an adequate
level of description for inter-subject analyzes in fMRI. At
the current state of the art, it cannot be interpreted as a
number of intrinsic brain modules. In particular, it depends
on the experimental paradigm, on the MRI scanner prop-
erties and image processing choices, as well as the amount
of functional information available for characterizing brain
regions (see the dependence on dF ).

Although based on different hypotheses, BIC and CV
criteria yield similar results for the optimal value of K. The
difficulty of making definitive assertion about the optimal K
is illustrated by the flatness of the curves, especially when
related to inter-subject variability. CV might be slightly
more conservative, which is logical since it measures the
generalizability of the parcel description rather than the pe-
nalized goodness of fit. Last, the analysis of variance com-
ponents with a hierarchical GMM, reveals that choosing
K > 200 is preferable, since the parcels are too large
otherwise, so that across-subject variance is dominated by
intra-parcel variability.

Knowing the optimal value for K will hopefully enable
us to more accurately apply clustering techniques in func-
tional data analysis, helping us to make more sensitive in-
ference and more informative connectivity studies. Last, the
probabilistic point of view of parcellation might be further
extended to study population homogeneity and to perform
subject classification.
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