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ABSTRACT

The physiological fluctuations (breathing and heartbeat) and brain
movements are the main sources of confounds in activation and
functional connectivity studies in functional magnetic resonance
imaging (fMRI). The main difficulty to cope with these effects is
the aliasing of cardiac and possible respiration signals for acquisi-
tions with long TR (typically TR > 1s). We proposed a method of
structured noise correction based on spatial Independent Compo-
nent Analysis, able to extract components linked to cardio-respiratory
activity and brain movements. The automatic selection of noise-
related components was based on a stepwise regression procedure
using ”true” physiological noise time courses as reference (ex-
tracted from regions of interest in the cerebro-spinal fluid and near
major blood vessels). We evaluated the sensitivity of the selection
on long-TR and short-TR datasets and we showed that our method
was efficient even for long-TR datasets.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a noninvasive
technique for mapping brain activity through the blood oxygena-
tion level dependent (BOLD) effect. BOLD signal depends on
blood oxygenation, blood flow and blood volume variations due
to neural hemodynamics. The major fluctuations of no-interest
that corrupt the BOLD signal include rapid and slow head move-
ments and physiological activity (breathing and heartbeat). On the
one hand, these fluctuations induce an increase data variance and
thereby decrease the sensitivity of activity detection. On the other
hand, these temporally correlated fluctuations are a critical sources
of confounds in functional connectivity studies in fMRI.

The effects due to respiration and heartbeat in fMRI have been
described and are quite different. Respiration induces firstly small
variations in the static magnetic field [1] and secondly, movements
of the chest induce global movements of the head at the respi-
ratory frequency preponderant in the cerebro-spinal fluid (CSF)
pools such as the ventricles or the outline of the brain [2]. Heart-
beat induces variations of blood flow and local tissue movement,
that are preponderant near major blood vessels [3]. Some various
strategies have been developed to reduce these effects but it re-
mains some important difficulties, especially on long-TR datasets
(typically TR<500 ms) where respiratory and particularly cardiac
effects are aliased in the Nyquist bandwidth.

On the one hand, some existing methods using adaptive dig-
ital filtering [4] or retrospective correction [5][6] assume that the
cardio-respiratory fluctuations were critically sampled and remained
stationary which is not the case generally. On the other hand,
spatial Independent Component Analysis proved its efficiency to

identify patterns of structured noise in fMRI data [7]. The auto-
matic selection of the corresponding components have been tested
on short-TR datasets with frequency priors on cardio-repiratory
activity [8]. Moreover, some other methods propose to regress
out true physiology-related fmri signals (major vessels or CSF
time-courses). We propose a method combining these two last ap-
proaches to remove structured-noise in fMRI. It consists of using
true noise-related fMRI signals as priors to select noise-related in-
dependent components even with long-TR datasets.

2. CORSICA METHOD

2.1. sICA and noise reduction

Addressing the problem of blind source separation, spatial inde-
pendent component analysis (sICA) allows to separate indepen-
dent processes from a sequence. In our case, fMRI data is hypoth-
esized to be the linear mixing of different brain processes whose
spatial distributions are invariant over time and statistically inde-
pendent. Even under such general hypotheses, sICA has proven to
be able to decompose fMRI data into components that represent a
specific brain phenomenon [7]. More precisely, sICA assumes the
linear model:

X = AS,

where X is the T × N matrix of fMRI time series with T time
samples and N voxels; S is a K × N matrix of K ≤ T spatially
independent sources (comprising N voxels each); A is the T × K

matrix of the K corresponding time courses (comprising T sam-
ples each).

We used the Infomax algorithm [9] implemented in FMRLAB
software1 to perform sICA on the fMRI datasets, with Principal
Component Analysis (PCA) as a preprocessing step in order to
whiten data (without data dimension reduction, i.e. K = N ).
The spatial sources Ŝ = (Ŝi)

K
i=1 were estimated by computing a

mixing matrix W which represents a linear transformation of the
data:

Ŝ = WX.

Obviously, the efficiency of physiological noise reduction based
on sICA depends on how accurately noise-related components can
be selected. We then proposed a new method of selection that
makes use of spatial priors related to the spatial distribution of
cardio-respiratory effects in fMRI series (see part 2.2).

Then, after selecting this relevant subset Ânoise of noise-related
independent components, it was straightforward to remove the struc-
tured noise from the data: these noise-related components were set

1http://www.sccn.usd.edu/fmrlab
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to zero and the data were reconstructed from the remaining com-
ponents Âint (such that Â = Ânoise ∪ Âint).

2.2. Noise-related components selection

The physiological signals were extracted from data in two spe-
cific regions of interest (ROIs) : the first comprising the first three
ventricles to detect especially global and respiration-related move-
ments and the second comprising the brainstem, the fourth ven-
tricle and the basilar arteries to detect local cardiac activity. Be-
cause of the large spatial extent of these ROIs, we reduced fur-
ther the number of characteristic signals by clustering the voxels
of each mask into NC clusters by using a conventional k-means
algorithm, with distance d between two voxels function of the cor-
relation between the time courses of the voxels [10]. The choice
of the optimal number of classes NC is discussed in the next part.
We then defined for the two ROIs NC signals characterizing the
structured-noise by averaging the times courses in each cluster.

Then, a stepwise regression procedure was used to select among
the K temporal components Â = {Â1, . . . , ÂK} obtained from
sICA decomposition, the components whose time courses explained
these NC noise characteristic signals. Let Y = {Y1, . . . , YNC

} be
the average time courses of the NC selected regions, normalized
to zero mean and unit variance. For each region element of Y, we
wished to select a subset of independent components explaining
its characteristic signal Yi. To do so, we used a stepwise regres-
sion procedure (stepwise forward-backward) [11]. For each signal
Yi, this iterative algorithm selected at each step a new independent
component that was significantly partially correlated with Yi (step-
wise forward) and then removed the already selected components
that were no longer significantly partially correlated with Yi (step-
wise backward). The procedure ended when no more significant
component (according to the given statistical threshold) was found
in stepwise forward. This procedure was repeated for each signal
Yi, finally yielding NC subsets (Vi)

NC

i=1
of noise-related compo-

nents.
For each ROI, we would remove from the data the major phe-

nomenons that influenced (at various levels) the most clusters de-
fined in this ROI. Then, the influence of each component in each
ROI might be evaluated by the relative number of subsets Vi con-
taining this component. This indicae, Fq is calculated for the
two ROIs independently (because each ROI were built to not cap-
ture the same type of fluctuations) and the final value of Fq for
each component was the maximum one. The components whose
Fq > F limit

q were selected. Moreover, to prevent us from the
Kmeans clustering variability, this indicae was calculated from NR

repetition of the selection procedure (Kmeans clustering and step-
wise regression). The choice of the number of repetition NR and
the influence of the threshold F limit

q was discussed hereafter.

3. CONTEXT OF VALIDATION

3.1. real datasets

EPI functional data were acquired on three right-handed volunteers
with a 3T Bruker scanner in the fMRI center in Marseille (France)
according to a protocol approved by the regional ethic commit-
tee. The subjects were scanned during three different conditions :
during continuous rest consisting of remaining eyes closed, during
continuous motor task consisted of performing a finger sequence
with the left hand and during a blocked design motor task with the

same task (the protocol was designed to test some hypothesis on
the learning mechanisms and was not detailed here). For each sub-
ject, 7 long-TR datasets (1 rest, 4 continuous task and 2 blocked
design task) and 3 short-TR datasets (1 rest, 1 continuous task and
1 blocked design task) were acquired. For long-TR datasets, 136
T∗

2-weighted volumes of 42 contiguous slices were recorded (the
FOV was 192 mm with a 64×64 matrix size and a 3×3 mm in-
plane voxel size, TR/TE = 2333/30 ms and α = 81◦). For short-
TR datasets, 950 T∗

2-weighted volumes of 2 groups of 3 contiguous
3-mm-thick slices, one group centered on the motor cortex and the
other on the ventricles (the FOV was 192 mm with a 64×64 ma-
trix size and a 3×3 mm in-plane voxel size, TR/TE = 333/30 ms
and α = 40◦). The heartbeat rhythm by plethysmography and
the respiratory rhythm by using a respiratory belt were recorded
during the acquisitions. The resulting raw data were corrected for
slice-timing effects by using the SPM99 software, corrected for
quadratic drifts by using linear regression and mean corrected.

3.2. References and validation

sICA was computed on the 21 long-TR datasets and the resulted
components were visually inspected by two experts. The first 60
components of each dataset (the independent components were
sorted in the decreasing order respect to the part of data variance
explained) were classified into 4 groups : group 3 hold the compo-
nents related to physiological fluctuations or movements exhibit-
ing major activity in the ventricles or in the brainstem, group 2
hold the components related to the other types of artifacts, group
1 hold the components clearly related to functional activity and
group 0 hold all other components. This classification was used as
a reference to discuss on the influence of the parameters NC , NR

of CORSICA in order to fix them.
Afterwards, we tested the CORSICA method with those fixed

parameters on the short-TR datasets. sICA was computed on the
9 short-TR datasets . We used the cardio-repiratory monitored
signals as reference to select physiology-related in order to com-
pare these approach to CORSICA. The power spectra of the time
courses of all K independent components were linearly regressed
on the power spectra of the two physiological signals. An F-score
was calculated to test the null hypothesis H0 : Cp = 0. Each com-
ponent for which the null hypothesis was rejected with p < 0.001
was considered to be related to physiology and included in group
3. Then, the first 60 components of each dataset, not classified in
group 3, were visually inspected to identify the components clearly
related to functional activity which were included in group 1. All
other components are included in group 0.

4. RESULTS

We first applied the CORSICA method on long-TR datasets. The
figure 1 showed the influence of NC and NR on the optimal sen-
sitivity on the group 3 of the method (the sensitivity on the group
g, Sensg , is defined as the ratio between the number of compo-
nents of the group g selected by CORSICA and the total number of
components of the group g - the so-called optimal sensitivity is the
value of Sensg for the lower value of F limit

q as Sens1 = 0). The
results showed that for NC ≥ 15 and for NR ≥ 3, the selection
was consistent on the three subjects and sensitive, and it was much
more sensitive on the first 20 components (the one explaining the
main part of the data variance) than on the first 60. Then, we fixed
NC = 15 and NR = 3 (the processing time increase linearly
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Fig. 1. Long-TR data : Optimal value of Sen3 function of NC on
the 60 first components (a) on the 20 first components (b)

with NC and NR) and we computed Fq for each component of
each dataset. Sens3 and Sens2 were calculated for each value of
F limit

q (their mean values on each subject was shown in figure 2).
The dotted vertical line is the lower value of F limit

q as Sens1 > 0
for at least one of the 21 datasets. It appeared that, for this value
of F limit

q , Sens3 was comprised between 0, 5 and 0, 75 for the
first 60 components and was comprised between 0, 8 and 0, 95 for
only the 20 first ones. Moreover, it appeared that CORSICA was
able to select some noise components of the group 2 which were
not specific target of the method. Therefore, the distribution of the
critical threshold F limit

q chosen individually for each dataset had
a mean of 0,09 (median = 0,08). For this ”adapted” threshold, the
sensitivity increased until 0,98 (see figure1). We then decided to
take F limit

q = 0, 25 (dashed vertical line in figure 2) to test the
full automatic method on the short-TR dataset.

The figure 3 showed that with the fixed set of parameters (NC =
15, NR = 3 and F limit

q = 0, 25), the CORSICA method, ap-
plied on short-TR datasets, was able to select a large majority of
the physiology-related components. The table 1 showed the vari-
ance variation between the uncorrected data and corrected data
in cerebro-spinal fluid (CSF), grey matter (GM) and white matter
(WM). It appeared that, as expected, the correction was important
in the CSF but also really efficient in the GM where the correction
was necessary to capture cleaner functional signals. Moreover,
with short-TR data we were able to calculate the power spectrum
of the signals in the cardiac and respiratory frequency bandwidth
before and after correction. The mean of the power spectrum cal-
culated in the grey matter for subject 1 was plotted figure 4. The
whole cardiac effect and the main part of the respiratory effect
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Fig. 2. Long-TR data : (a) Sens3 function of F lim
q on the 60 first

components (top) on the 20 first components (bottom); (b) Sens2

function of F lim
q on the 60 first components (top) on the 20 first

components (bottom)

were corrected.

5. DISCUSSION

We proposed a method of structured noise correction, CORSICA,
based on the ability of sICA to identifying patterns of structured
noise in fMRI and on the use of time-courses of brain regions
specifically influenced by structured noise. On the one hand, the
use of this kind of a priori allows the method to be applied not
only on short-TR datasets (where cardio-respiratory rhythms are
critically sampled) but also on long-TR data. On the other hand,
it allows not to make unrealistic assumptions on signal stationarity
and frequency localization used in many others methods of noise
correction in fMRI. The method was able to calculate a score for
each independent components which allowed to discriminate the
physiology-related components from the components related to
functional activity. The choice of the threshold appeared to be crit-
ical but it was possible to propose a conservative threshold leading
to the correction of the main effects in a full automatic way (see
results in short-TR datasets). Therefore, the noise correction could
be individually improve if the threshold is adapted, leading to a
semi-automatic correction.

However, our method of noise reduction based on the selec-
tion of noise-related components are obviously narrowly linked
to the ability of sICA to separate physiology-related phenomena
from the other brain processes. If physiology-related signals and
neural-activity-related signals remained mixed into several compo-
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Fig. 3. Short-TR data : (a) Sens3 function of F lim
q on the 60 first

components (top) on the 20 first components (bottom)

csf gm wm
block 0,18 0,14 0,14

subj.1 continu 0,13 0,09 0,09
rest 0,12 0,10 0,10

block 0,29 0,17 0,14
subj.2 continu 0,16 0,09 0,08

rest 0,23 0,12 0,10
block 0,21 0,14 0,12

subj.3 continu 0,22 0,13 0,11
rest 0,19 0,12 0,11

mean 0,19 0,12 0,11

Table 1. Short-TR data : Normalized variations of the variance (in
%) in cerebro-spinal fluid (csf), grey matter (gm) and white matter
(wm).

nents, the method of selection we proposed might suppress a part
of signal of interest. So, to improve the method, it seemed to be
important to control the independent components separation, even-
tually by incorporating in the sICA model some prior information
on spatio-temporal characteristics of cardio-respiratory effects we
would identify and remove.
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