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ABSTRACT

Recently, we have proposed a new framework for detecting
brain activity from fMRI data, which is based on the spatial
discrete wavelet transform. The standard wavelet-based ap-
proach performs a statistical test in the wavelet domain, and
therefore fails to provide a rigorous statistical interpretation
in the spatial domain. The new framework provides an “inte-
grated” approach: the data is processed in the wavelet domain
(by thresholding wavelet coefficients), and a suitable statisti-
cal testing procedure is applied afterwards in the spatial do-
main. This method is based on conservative assumptions only
and has a strong type-I error control by construction. At the
same time, it has a sensitivity comparable to that of SPM.
Here, we discuss the extension of our algorithm to the re-
dundant discrete wavelet transform, which provides a shift-
invariant detection scheme. The key features of our technique
are illustrated with experimental results. An implementation
of our framework is available as a toolbox (WSPM) for the
SPM2 software.

1. INTRODUCTION

Parametric hypothesis-drivenmethods are commonly used for
the analysis of fMRI data. SPM [1, 2] is one of the most
popular software packages for this type of analysis. Its main
characteristics are the preprocessing of the data by a fixed
Gaussian filter and the application of Gaussian random field
theory to control the multiple hypothesis testing problem.

The “wavelet community” has come up with an alterna-
tive which is to replace the Gaussian prefilter by the spatial
discrete wavelet transform (DWT) [3]. The basic idea is to
apply a statistical test to the wavelet representation of the
parameter map, which is obtained after modelling the time-
courses with a linear model (LM). Thanks to the sparsifying
and decorrelating properties of the DWT, the sensitivity of
such a test is higher than in the spatial domain. Unfortunately,
there is a fundamental problem to map back the statistical sig-
nificance in the spatial domain and determine whether a par-
ticular voxel can be considered as activated.

Recently, we proposed a novel framework [4] where we

determined the statistical significance (hence testing) in the
spatial domain, taking into account the influence of prior
wavelet processing (=denoising). The method is briefly sum-
marized in Sect. 2.

One of the major disadvantages of the discrete wavelet
transform (DWT) is its shift variance. In this paper, we in-
vestigate the use of the redundant DWT and its influence on
the framework. We also consider the combination of mul-
tiple non-redundant DWTs. The feasibility of the proposed
approach is experimentally demonstrated. We report an in-
creased sensitivity of a factor 2 while maintaining strong type-
I error control.

2. THE INTEGRATED FRAMEWORK

We explain the integrated framework for wavelet-based sta-
tistical analysis step-by-step, as shown in Fig. 1 (a). Con-
sider the fMRI dataset v[n; t], where n is the spatial index
and t = 1, . . . , Nt the temporal one. We assume that every
volume has been realigned and eventually normalized, but not
smoothed.

2.1. Spatial representation using the DWT

First, the DWT is applied along the spatial dimensions to each
volume. The wavelet representation of the signal is

v[n; t] =
∑
k

vw[k; t]ψk[n], (1)

where vw[k; t] denotes the wavelet coefficients and where ψk

is the corresponding wavelet or scaling function; the index k

runs over all subbands and orientations. The DWT is a de-
composition into a basis, providing non-redundancy and per-
fect reconstruction. The DWT is implemented as a fast iter-
ated filterbank.

2.2. Temporal modelling using the LM

The wavelet coefficients are now arranged in a time-course
vector as vw[k] = [vw[k; 1] . . . vw[k; Nt]]

T. For each index
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(a) (b)

Fig. 1. An overview of the integrated framework for wavelet-based statistical analysis. (a) The standard method. (b) The
extension of the method to improve for shift-invariance by combining multiple shifts of the data.

k, we setup a LM that is intended to explain temporal evolu-
tion of vw [k]:

vw[k] = Xyw [k] + ew[k], (2)

where the design matrix X contains L regressors (i.e., ba-
sis functions related to the experiment), yw[k] is a parameter
vector of length L, and ew[k] is the residual error. In the basic
form of the LM, the residuals are assumed to be (temporally)
independently and identically gaussian-distributed, which al-
lows us to estimate ȳw[k] by the pseudo-inverse of X, and the
residuals as ēw[k] = vw[k]−Xȳw [k]. The signal of interest,
which will be used to detect activity later on, is extracted by
the contrast vector c:

uw[k] = cTȳw[k], (3)

s2
w[k] = ēw[k]Tēw[k]cT(XTX)−1c. (4)

Often, the general linear model (GLM) is used, which allows
us to deal with temporal correlations of the noise.

2.3. Denoising in the wavelet domain

For each wavelet “location” k, we have an estimated contrast
value uw[k], and a residual error sw[k]. In the absence of
activation (so the wavelet coefficient only “captures” noise),
the proportion

tw[k] =
uw[k]√
s2

w[k]/J
, with J = Nt − rank(X), (5)

should follow a Student t-distribution with J degrees of free-
dom. We propose to hard-threshold the coefficients uw[k]
based on this t-value. The reconstruction in the spatial do-
main can then be written as

ũ[n] =
∑
k

ũw[k]ψk(n),where

8<
:

ũw[k]=uw[k], when |tw[k]|>τw,

0, otherwise,

where τw is a threshold parameter to be determined later.

2.4. Statistical testing in the spatial domain

The statistical hypotheses are formulated in the spatial do-
main as

H0 : E[ũ[n]] = 0, H1 : E[ũ[n]] > 0. (6)

The null hypothesis is rejected based on the following in-
equality:

Prob

[
ũ[n]

Λ[n]
≥ τs

]
≤ Υ(τw, τs), (7)

where Υ(τw, τs) is data-independent, and Λ[n] is a “rectified”
reconstruction of the residuals:

Λ[n] =
∑
k

sw[k]√
J

|ψk(n)| . (8)

The threshold values τw and τs are obtained by choosing a
desired global significance level α, which fixes Υ(τw, τs) =
α/N , where N is the number of intra-cranial voxels to com-
pensate for multiple testing. The proportion ũ[n]/Λ[n] can be
interpreted as a meaningful statistical parametric map in the
spatial domain.

3. EXTENSIONS

One of the major disadvantages of the non-redundant DWT
is its shift-variance. A 1-D example is shown to illustrate
the main ideas: a small Gaussian-like activation u0[n] is
corrupted with additive white noise (Nt = 80 realizations,
σn = 0.25). We apply the framework using the orthogonal
B-spline wavelet (degree 2, 1 iteration) and fixing the signifi-
cance level at α = 0.5%, which gives τw = 4.53, τs = 0.22.
Using the non-redundant DWT, the activation is detected de-
pending on its position, as can be seen in Fig. 2 (a) and (b).
The shifted input signal of (b) has a less compact represen-
tation in the wavelet domain, which changes the result of the
thresholding step.
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Fig. 2. 1-D example. 1: ground truth u0[n]; 2: adaptive
threshold τsΛ[n]; 3: reconstructed contrast ũ[n]. (a) Non-
redundant DWT, activation is placed at an even position.
(b) Non-redundant DWT, activation is placed at an odd posi-
tion. (c) Redundant DWT. (d) Multiple non-redundantDWTs.

3.1. Redundant DWT

The redundant DWT can be obtained by the “à trous” algo-
rithm, which does not subsample the data but modifies the
filters accordingly. For a DWT with Ns subbands and Jw it-
erations, the redundancy factor is (Ns−1) ·Jw +1. While the
redundant DWT is shift-invariant, the required storage space
and computational load quickly increases as the number of
iterations goes up, in particular for multi-dimensional data.

The redundant DWT can be plugged into the framework
without any modification. This is particularly tempting since
the threshold values τw and τs remain unchanged too. Un-
fortunately, the energy captured by a single coefficient is less
than in the non-redundant case. Consequently, if the same
number of coefficients survive thresholding, the reconstructed
parameter map ũ[n] will have lower values, and thus a higher
risk to be undetected in the spatial domain. The 1-D exam-
ple, in Fig. 2 (c), shows the decrease of ũ[n] and thus also the
significance ũ[n]/Λ[n].

3.2. Multiple non-redundant DWTs

We propose to mitigate this problem by analyzing the data un-
der M different shifts: the data volumes are shifted by d(m),
m = 1, . . . , M , each set is analyzed using the non-redundant
DWT, and the results unshifted by −d(m). Thus, for each
shift, we still have the null hypothesis condition

Prob

[
ũ(m)[n]

Λ(m)[n]
≥ τs

]
≤ Υ(τw, τs). (9)

We combine these results by selecting the shift that has the
highest statistical significance:

Prob

[
max

m

(
ũ(m)[n]

Λ(m)[n]

)
≥ τs

]

= Prob

[
M∨

m=1

ũ(m)[n] ≥ τsΛ
(m)[n]

]

≤
M∑

m=1

Prob
[
ũ(m)[n] ≥ τsΛ

(m)[n]
]

≤ MΥ(τw, τs).

Clearly, the penalty to pay is the redundancy factor M , which
increases the threshold values τw and τs for a fixed α (to guar-
antee the same strong type I error control). In practice, M
can be kept quite low and the “best” result of each shift is
obtained.

For the 1-D example, the redundancy is M = 2, which
fixes the new threshold values at τw = 4.69, τs = 0.21. In
Fig. 2 (d), the activation is recovered without any loss of en-
ergy or significance.

The approach allows us to control the redundancy factor.
To be truly shift-invariant, it requires Ns · Jw shifts. For ex-
ample, 4 shifts in the XY-plane ([0 0], [1 0], [0 1], [1 1]) would
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Fig. 3. Wavelet-based parametric maps using the non-
redundant DWT. Influence of a spatial shift on the detection
results. The number of detected voxels, from top to bottom,
left to right: 452, 388, 403, 464.

be shift-invariant for Jw = 1. For a higher number of itera-
tions, this redundancy is still satisfactory (giving quasi-shift-
invariance), with a reasonable increase of storage space and
computational load.

4. RESULTS

We show experimental results for a block-based paradigm [5]
(Siemens 2T Magneton, auditory stimulation, repetition time
7s, spatial dimensions 64× 64× 64, voxel size 3× 3× 3mm,
84 volumes). Realignment and setup of the GLM (canonical
HRF; highpass filter (1/168Hz); AR(1) model for serial cor-
relation of the noise) was done using SPM2. We fix the global
significance level at 5%. Results of activation maps are shown
for a slice that cuts through the auditory cortex, and mapped
on a T1 anatomical scan as background.

The framework was applied using 2-D (slice-by-slice)
separable orthogonal B-spline wavelets (degree 1, 1 itera-
tion). WSPM uses the complete GLM setup of SPM2, in-
cluding the estimation procedure for the AR model and the
Satterthwaite approximation for the degrees of freedom. The
threshold values for the desired significance level correspond
to τw = 5.47, τs = 0.18. In Fig. 3, we show the activation
maps for the non-redundant DWT (top left) and also for dif-
ferent spatial shifts (horizontal, vertical, and diagonal direc-
tion). Clearly, the influence of such a shift in not negligible.
Not only the detected patterns differ, but the total number of
detected voxels also varies between 388 and 464.

The sensitivity drops significantly when we apply the re-
dundant DWT; the total number of detections being only 187.

The proposed combination of multiple non-redundant
DWTs (for the 4 different shifts introduced before) fixes the
threshold values at τw = 5.72 and τs = 0.17. Despite the

Fig. 4. Left: Parametric map of SPM2 with 5mm smoothing
(430 detected voxels). Right: Wavelet-based parametric map
using the combination of the 4 non-redundantDWTs of Fig. 3
(812 detected voxels).

higher threshold in the wavelet domain, the total number of
detected voxels attains 812, which is a remarkable improve-
ment compared to the non-redundant approach. The detec-
tions seem to follow well the transverse temporal gyrus. As
a reference, the result of SPM2 for 5mm smoothing is shown
in Fig. 4 (left), corresponding to 430 detected voxels.

For datasets with higher resolution, thus smaller voxel
size, it is advantageously to increase the number of iterations
of the DWT. At the same time, keeping the same number of
spatial shift seems to be a good compromise.

5. CONCLUSION

The redundant DWT presented itself as the ideal candidate
to extend the framework for shift-invariant analysis. How-
ever, next to the high demands for storage and computation,
the redundant DWT results into a significantly lower sensitiv-
ity. Therefore, we proposed the combination of multiple non-
redundant DWTs, with a controlled degree of redundancy, re-
sulting in higher sensitivity. Future research should also con-
centrate to improve the directionality of the 2-D DWT, see [6].

The WSPM toolbox is freely available to the research
community at http://bigwww.epfl.ch/wspm.
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