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ABSTRACT

This paper presents a novel statistical approach for the mod-
eling and analysis of structured random processes observed
through multiple event sequences: the hidden Markov multi-
ple event sequence model (HMMESM). This model accounts
for several features of these processes:

� � �
the hidden–obser-

vable aspect of the event sequences to be analyzed,
� � � �

the
multiplicity of the observed event sequences,

� � � � �
the non

stationary, time-localized character of their events,
� � 	 �

the
redundancy, complementarity, and strong asynchrony that ex-
ist between events across sequences. A first application of this
model in functional MRI (fMRI) brain mapping is presented.
The developed method shows high robustness to noise and
variability of the active fMRI signals.

1. INTRODUCTION

Many random processes, met in particular in the biomedical
field, appear as a hidden structured event-based process ob-
served through multiple correlated sequences of highly non-
stationary, time-located events. For example, the cardiac elec-
trophysiological process can be observed through multiple se-
quences of electrocardiographic events (P, QRS, T), whereas
the neuronal activation process in functional MRI (fMRI) can
be observed through multiple sequences of dynamics changes
detected in the fMRI signals. Unfortunately, three main dif-
ficulties arise when analyzing such processes, when the stan-
dard hidden Markov modeling (HMM) framework is used.
The piecewise stationarity assumption required for the ob-
servable process of an HMM is incompatible with the tran-
sient, nonstationary nature of the observed events. The HMM
formalism is not well suited to handle simultaneously a large
number of event sequences and to take into account strong
asynchrony that may exist between events across sequences.
To cope with these limitations, we propose to adapt the HMM
formalism by placing it within the scope of event detection
and event sequence fusion. In this context, a preprocess-
ing step detects, independently in each observable channel,
events of interest. Detected events are then associated across

channels, based on knowledge about the hidden process under
analysis and on causality constraints between event associa-
tions. The new meaning thus given to the sequence of obser-
vations leads to a new type of HMMs : the hidden Markov
multiple event sequence model (HMMESM). By exploiting
the redundancy and the complementarity of events detected
across multiple observation channels, this model is well ada-
pted to the analysis of multiple event-based random processes.
As an illustration, activation detection results obtained by HM-
MESMs in fMRI brain mapping are particularly convincing.

2. HIDDEN MARKOV MULTIPLE EVENT
SEQUENCE MODELS

An HMMESM is a doubly stochastic process, � 
 � � � � � , ded-
icated to the modeling and analysis of a non directly observ-
able, event-based random process, the so-called deep pro-
cess, observed through � correlated event-based random pro-
cesses, the shallow processes. The term “correlated” means
here that a deep event gives rise to � observable events at
most, one per process, in the shallow processes. Also, to
be observable, and thereby detectable, any deep event should
give rise to one shallow event at least. In this context, � 
 � � ,
the hidden part of an HMMESM, models the ordering of deep
events along the ordering axis � . Its observable counterpart,

� � � � , accounts for the temporal aspects and the short-term
statistical characteristics of the deep and related shallow events
along the time axis � .

2.1. Multiple event sequences, Scenarios, Observation se-
quence

In an HMMESM approach, a preprocessing step detects, in-
dependently in each input shallow process, events of inter-
est for the deep process analysis. Let �  " # � % ' be the
observation time interval, � be the number of shallow pro-
cesses, ( * , . , / 1 3 1 � , be the occurrence time set of
the events detected in the 3 -th shallow process. Two fic-
tive events are introduced at the beginning and the end of
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each detected event sequence for modeling purposes. For the
sake of simplicity, an event is only characterized by its occur-
rence time so that the detected event sequences are finally de-
noted: � � � � � � 	 
 � � � � � . An example of event sequences is
represented in Fig. 1(a) for � � � . By definition, the obser-
vation sequence � = � � � � 
 
 
 � � of an HMMESM results
from the combination of the event sequences � with a valid
scenario, � , defined by:� � � � � � � � � � 
 � � � � � (1)

A scenario explains the detected event sequences � . The term�
represents the number of deep events.

� � denotes the occur-
rence time of the � -th deep event whereas � � is the associated
signature. A signature � � is the observable counterpart of a
deep event. It is composed of one shallow event by obser-
vation channel. Shallow events can be either detected (true
positive events: tpes) or not (missing events: mes). A me is
due to the misdetection of an event of interest in an observa-
tion channel. For example, the signature � � of the Fig. 1(b) is
made of two mes (black points) and of one tpe (vertical line).

In the sequel,
� � � 	� denotes the occurrence time of the

event associated with the � -th deep event and observed on the
� -th observation channel and � � � 	� denotes the related mea-
sure. This measure is empty ( � � � 	� � � ) if the associated
event is a me (

� � � 	� �� � � � 	 ) and this measure is not empty
( � � � 	� �� � ) if the event is a tpe (

� � � 	� � � � � 	 ). The set� � � � � � � 	� � � � � 	� " � � � � � 
 is referred to as the signature
of the � -th deep event.

As shown in Fig. 1(b), a scenario defines a particular tem-
poral cutting of � across all event sequences. Many scenarios
may explain the detected events. However, � is considered
as a valid scenario of � if it verifies:#$$$% $$$&

� � � � � � � � � 	� � �� � � � � � � � � � 	� �  � � � � � � � 	� � "� � � � � � ' ( � ) � � + ( � � � � � � 	� + ( � � � 	�� � % � . � � 0 � 1 � � � 	� �� �
(2)

Statement
� � � �

relates to the fictive signatures introduced
at the beginning and the end of the sequences. Statement

� � � � �
means that signatures preserve the ordering of their trigger-
ing deep events. Statement

� � % �
stipulates finally that one

detected event at least is present per signature to fulfill the
observability prerequisite of deep events.

In practice, the � -th observation of � , � � , is made of
the deep event occurrence time

� � , of the associated signature� � , and of all the false positive events (fpes) detected between� � 6 � and � � , denoted 7 � 6 � 8 � , so that � � � � � � � � � � 7 � 6 � 8 � 

except for � � , see Fig. 1(c).

2.2. Elements of an HMMESM

An HMMESM is completely specified by the parameter set; � � < � = � > � ? 
 and by a random weight vector @ :
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Fig. 1. Event sequences, scenario, observation sequence. (a)
Set � of detected event sequences ( � =3). (b) Example of a
scenario � which explains � . Black points composing the
signatures correspond to missing events. (c) Constructing an
observation sequence � � � � � � � � � � from a valid sce-
nario � and a set � of detected event sequences.� < denotes the cardinal of the state space = � � � � " � �� � < 
 of the hidden process. � � and � � are defined as the
start and final states of the process. They account for the start
and final signatures � � and � � , respectively.� > � � � � � 
 is the transition probability matrix of the
model, where � � � � � � ) � � � � � ) � 6 � � � � �

.� ? � � � � � � � 
 � 
 � 
 is the set of observation probability
density functions (pdfs) attached to the hidden states of = .
We state:� � � � � � � 6 �� �   � � � ¡ � @ � �� � � � � � � 6 � � ) � 6 � � � � � ) � � � � � ¡ � @ �

� � � � � � � � � � � 6 � �
(3)

where ¤ � � stands for ¥ � 
 
 
 ¥ � .� ¡ is a vector of � random variables,with realization@ � �
w � 
 
 
 w � � ©

, ª �
� « � w � � � , that reflects the confi-

dence we have in each of the shallow processes.

2.3. Inference with HMMESM

The three basic problems of HMMs [1] also arise within the
HMMESM framework, but with a somewhat different formu-
lation due to the partially observable aspect of the observa-
tion sequence � . Indeed, for a given set � of detected event
sequences, multiple observation sequences � are possible.
They have to be taken into account when solving the infer-
ence problem:

Evaluation: given � ,
;

and @ , compute the likelihood:� � � � ; � @ � � ª ­ ¯ ° � ± 	 ª ² � � � �   � ; � @ �
.

Decoding: given � ,
;

and @ , infer the observation (the
scenario) and state sequence that best explain � : � µ� � µ  
 �
argmax ­ ¯ ° � ± 	 8 ² � � � �   � ; � @ �

.
Learning: given � and @ , adjust the parameter set

;
to

maximize the likelihood � � � � ; � @ �
.

� � � � � �
denotes an observation sequence that results

from the combination of � with a valid scenario � taken in
the set � � � �

of all valid scenarios that could explain � .  
denotes a possible state sequence at the origin of the observa-
tion sequence � .

V ­ 1098



3. APPLICATION IN FMRI BRAIN MAPPING

Activation detection is formulated in terms of temporal align-
ment between sequences of hemodynamic response onsets
(HROs) detected in the fMRI signal at voxel

�
and in the

spatial neighborhood of
�
, and the input sequence of stim-

uli or stimulus onsets, whether an epoch- or an event-related
paradigm is considered. This multiple event sequence align-
ment problem is solved within the probabilistic framework of
HMMESMs. The deep process is the neural activation pro-
cess that may take place at voxel

�
under stimulation (neural

activation onset (NAO) events are the deep events). The re-
lated shallow processes are the fMRI signals observed at

�
and in its neighborhood (HRO events are the shallow events).

The benefit of estimating brain activity at voxel
�

by mul-
tiple event sequence alignment is fourfold. Robustness to
noise can be achieved by taking into account spatial and tem-
poral information directly into the core of the activation de-
tection process. Analyzing only the non-stationarities of the
fMRI signal rather than the whole signal makes it possible
to model easier the timing function encoding the sequence of
task-induced neural activations. It avoids hypothesizing about
the shape of the hemodynamic response function (HRF) and
about the linearity of the fMRI response.

The fMRI brain mapping procedure applied for each voxel�
is depicted in Fig. 2.

� � � � � 	 
 � � � �
� 
 � 
 � � � �
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Fig. 2. Synoptic diagram of the brain mapping procedure at
voxel

�
.

The set of multiple event sequences, � } , is obtained by
preprocessing the fMRI signal at

�
and in its neighborhood.

HRO event detection relies upon a wavelet decomposition of
the fMRI signals [2]. For each voxel, 3 event sequences are
derived using 3 different scales of decomposition. Therefore,
when considering a ~ -connectivity 3D neighbourhood ( ~ =26
in our application), the set � } used to score neural activation
at location

�
is made of 3( ~ +1) event sequences.

In the modeling step, the state space of the hidden process
and the topology of the model are first defined from the stim-
ulation paradigm. Let us consider a binary activation-baseline
paradigm composed of � stimulation blocks. Among them,
two are fictive blocks introduced at the beginning and the
end of the paradigm for modeling purposes. Then, a state

� � , 1 � � � � = � , is used to model the
�
-th task-induced NAO

event, or, equivalently, the
�
-th off-on paradigm transition.

The start and final states � � and � � are then added. A left-
right topology is selected for the Markov chain modeling the

deep process, with the additional constraints � � � � � ,

 �

, and
� � 
 � � if

� � �
+ � , with � � � � , to prevent to declare ac-

tive an fMRI signal that only responds to a few stimulation
blocks. An example of Markov chain topology is depicted
in Fig. 3 with � = � and � = � . Concerning the state observa-

� � �

� � �
� � � � � � � � � �

� � � �
��

Fig. 3. Brain activation modeling. (a) input stimulation
paradigm, (b) schematic representation of the task-induced
NAO sequence, (c) resulting brain activation HMMESM.

tion pdf’s, in order to model a possible activation lag � of the
NAO events at voxel

�
, a random variable � is introduced

in the expression of Eq. (3). Under some conditional inde-
pendence assumptions of the observation components

� � , � � ,
and � � � � � � , the expression of a state observation pdf can be
factorized (Eq. (4)). In addition, we use data reduction tech-
niques to limit the dimensionality of the observation.

� � 
 � � � � � � � � � � � �
� � � � � � � � � 
 � � � � � � � 
 � � � � 
 
 " � $ 
 � � � � �
� � � � � � � � � 
 
 � � � � & � � � � � � � � � 
 
 � � �

& � � � � � � � � � � � � � � � � 
 � � � � 
 
 � � 
 � � � � �
(4)

The first pdf in the product of Eq. (4) is a one-dimensional
Gaussian defined as � � � 
 ¡ � 
 £ 
 �

, where � 
 denotes the time
instant of the

�
-th off-on paradigm transition and � is the lag.

The two other terms are modeled by Gaussian pdfs.
Finally, learning and mapping are performed at each lo-

cation
�

based on the learning set � } . For processing time
reasons, the learning problem is solved with a segmental k-
Means algorithm [1] by maximizing the following criterion:¤ ¥ � } � ) � ¦ + - . � 0 § � � 1 � � � ¨ � � � � � 
 2 � � 
 4 
 $ � . Mapping is
finally performed based on the likelihood map � ¤ ¥ � } � initially
transformed into a ¤ -value map [2].

4. RESULTS

The HMMESM-based brain mapping method was applied to
synthetic and real epoch-related fMRI data. Five epoch-related
synthetic data sets (DS1–DS5) were derived from a single
real noise fMRI data set (no activity) using fake activation
patterns embedded at known locations. The data sets DS1–
DS3 were designed to illustrate the signal to noise variability.
The activation pattern was obtained by convolving the HRF
model proposed by the statistical parametric mapping (SPM)
software [4] with the “expected” boxcar-like timing function
(150 scan length, 7 blocks ON interleaved with 8 blocks 0FF,
10 scans each). The SNR associated with DS1, DS2 and DS3
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Fig. 4. (a,b) Detection results (ROC curves) on epoch-related
synthetic data for (a) DS1 (‘ � ’,‘ � ’), DS2 (‘ � ’,‘ � ’) and DS3
(‘ � ’,‘ � ’), and for (b) DS4 (‘ � ’,‘ � ’) and DS5 (‘ � ’,‘ � ’). (c)
Results on epoch-related real data. Activated brain regions
are represented in white. Top left: HMMESM map. Top right:
HMMESM activation lag map. A gray level scale graduated
in number of scans is used to represent the local activation lag
estimate. Bottom left: HMMESM in-phase activation map.
Bottom right: SPM map. (d,e) “expected” boxcar-like timing
function (dotted line) and activation patterns used to build the
synthetic data sets DS4 and DS5 (thin line), see text.

was large, medium and small, respectively (following the def-
inition of [3], SNR=1, 0.5 and 0.25, respectively). The data
set DS4 was designed to illustrate timing variability between
stimulation paradigm and neural/hemodynamic response. Four
activation patterns were obtained by convolving the HRF of
the SPM sotware with four delayed versions of the “expected”
boxcar-like timing function (see Fig. 4(d), only 2 ON blocks
are presented). The last data set DS5 was designed to illus-
trate variability in the shape of the hemodynamic response to
a stimulation block (unsustained activation during task). Four
noise-free activation patterns were computed by convolving
the HRF of the SPM sotware with the four deterministic func-
tions plotted in Fig. 4(e). Finally, � � real epoch-related fMRI
data sets were acquired from healthy subjects who were asked
to perform auditory lexical processing. The SPM method was
employed as the main comparator of the HMMESM method
(SPM2 release). It makes use of a single regressor, namely,
the HRF model proposed by the software convolved with the
“expected” boxcar-like timing function. The three synthetic
data sets DS1–DS3 should rather be considered as an “ideal”
application case of SPM since the regressor used for SPM
analysis completely matches the noise-free activation pattern
to be detected.

With respect to the synthetic data sets, activation detection
performance of the HMMESM and SPM methods are com-
pared from receiver-operating characteristic (ROC) curves.

Results obtained for DS1,DS2 and DS3 demonstrate the ro-
bustness to noise of the HMMESM method when compared
to SPM (see Fig. 4(a)). They can largely be explained by the
multiple-event-sequence-based, spatial information fusion str-
ategy used to detect local neural activity. Results obtained for
DS4 show clearly the complete insensitivity of the HMMESM
method to timing variations of the hemodynamic response
with respect to the input stimulation blocked paradigm (see
Fig. 4(b)). They point out the contribution of a statistical
modeling of the activation delay. Results obtained for DS5
demonstrate the relative insensitivity of the HMMESM me-
thod to variations of the hemodynamic response to a stimula-
tion block (see Fig. 4(b)). These results validate the strategy
that consists in focusing the analysis on the transient events
that are the HROs.

With respect to the real epoch-related data sets, activation
detection results obtained by the HMMESM and SPM meth-
ods have been compared based on activation maps. HMM-
ESM maps are in very good accordance with SPM ones. Be-
sides, the HMMESM maps show additional delayed activa-
tion areas with respect to the stimulation blocked paradigm.
A representative example of HMMESM and SPM mapping
results is shown in Fig. 4(c).

5. CONCLUSION

A markovian model dedicated to the analysis of multiple event
sequence based random processes has been presented. From
this model, an unsupervised fMRI brain mapping method has
been developed. By accounting for spatial information within
a statistical framework of multiple event sequence detection,
multiple event sequence fusion, the HMMESM based map-
ping method shows high robustness to noise and variability of
the active fMRI signal.
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