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ABSTRACT

The classical approach of within-subject analysis in event-related

functional Magnetic Resonance Imaging (fMRI) first relies on (i)

a detection step to localize which parts of the brain are activa-

ted by a given stimulus type, and then on (ii) an estimation step
to recover the temporal dynamics of the brain response. To date,

specially in region-based analysis, the two questions have been

addressed separately while intrinsically connected to each other.

This situation motivates the need for new methods in neuroima-
ging that go beyond this unsatisfactory trade-off. In this paper,

we propose a generalization of a region based Bayesian detection-

estimation approach that addresses (i)-(ii) simultaneously as a bi-

linear inverse problem. The proposed extension relies on a 2-class
Gamma-Gaussian prior mixture modeling to classify the voxels of

the brain region either as activated or unactivated. Our approach

provides both a spatial activity map and a HRF estimation using

Monte Carlo Markov Chain (MCMC) techniques. Results show
that this novel mixture model yields lower false positive rates and

a better sensitivity in comparison with a 2-class Gaussian mixture.

1. INTRODUCTION

Many studies in fMRI aim to localize brain regions for which

the signal fluctuations correlate with the stimulus or subject task.

In event-related fMRI, complementary analysis allows us to reco-
ver the temporal dynamics of the brain response [1, 2]. Up to now,

these questions have been addressed sequentially. In [3], a novel

detection estimation approach was proposed to perform these two

tasks simultaneously in a region-based analysis. Within the Baye-
sian framework, we first integrated physiological prior information

to obtain a slow-varying time course as an estimate of the shape of

the Hemodynamic Response Function (HRF). We also considered

a mixture of two Gaussian probability density function (pdf) as a
prior model on the “neural” response levels (NRL) to accomodate

the voxel and task-dependent variations within the ROI. Reliable

results have been obtained on real fMRI data in regions of inter-

est (ROI) where most voxels were actually activated for a given

stimulus type. We also noted that when the chosen ROI was not
involved by a given stimulus type, high false positive rates were

observed. A thorough analysis showed that the conditional pos-

terior pdf of the NRLs, which is also a two-class Gaussian mix-

ture, consisted of distributions too close to be distinguishable. In
this paper, we propose an extension of this method to cope with

this issue : our goal is to obtain a more robust classification of the

two classes and an improved estimation of all parameters. To this

end, we introduce a Gamma-Gaussian mixture prior model on the

NRLs and derive the target posterior pdf as well as posterior mean
estimates (PMEs) of all the parameters of interest and hyperpara-

meters. These estimates are directly computed from the generated

samples using a Gibbs sampler algorithm. This approach is tested

both on synthetic and real fMRI data. Compared to [3], a signifi-
cant gain is achieved in terms of specificity (lower false positive

rate) and sensitivity (lower false negative rate).

2. MODEL

2.1. Formulation

Let us define yj = (yj,tn)n=1:N as the fMRI time course

measured in voxel Vj at time tn. Here, a functionally homoge-

neous ROI R = (Vj)j=1:J is first characterized by a single HRF

shape h = (hdτ )d=0:D (D + 1 is the number of HRF coefficients
and τ is the sampling interval of the trial onsets) and second by

task and voxel dependent magnitude adjustment described by pa-

rameter am
j for voxel Vj and condition m. Then the model reads :

yj =

MX
m=1

am
j X

m
h + P �j + bj , ∀ j = 1 : J, (1)

where Xm = (xm
tn−dτ )d=0:D

n=1:N is a binary matrix corresponding to

the arrival times for the mth condition. Note that P �j models the
trend and bj ∼ N (0, ε2j) stands for the noise. Here for simplicity,

we have just considered a spatially varying Gaussian white noise

model. A more sophisticated model could be introduced using au-

toregressive processes to account for the serial correlation of the
fMRI time series as done in [4].

2.2. Likelihood

We assume that the fMRI time series y = (yj)j=1:J are iid in

space, so the likelihood function reads :

p(y |h, a, �, ε2) ∝
JY

j=1

ε−N
j exp

“
−

1

2ε2j

‚‚eyj − P �j

‚‚2
”
,

where eyj = yj −
P

m am
j Xmh.

3. THE DETECTION-ESTIMATION PROBLEM

Assuming that the given ROI has homogeneous vasculature

properties, we propose to estimate a single HRF shape h and the

corresponding NRLs. Our aim is also to classify voxels of the ROI
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either as activated or not. Following [5, 6], a two-class mixture mo-

del on the NRLs has been introduced in [3]. For every condition m,

2 Gaussian priors have been considered : one for activated voxels
(class 1) and the other for unactivated ones (class 0). With respect

to the NRLs, the posterior distribution is also a Gaussian mixture.

When the main part of the ROI is not activated, we observed that

this posterior mixture is almost degenerated in the sense that some
voxels are randomly assigned to class 1 while they may correspond

to unactivated areas. Here, we propose to solve this problem by

choosing a more appropriate prior model for the NRLs. We choose

two different pdfs for the conditional distributions of the NRL gi-
ven the class. We keep a Gaussian pdf for unactivated voxels, while

we consider a Gamma pdf for activated ones. Doing so, negative

NRLs are forbidden in class 1, meaning that activations are model-

led by non-negative NRLs. In what follows, we give all the avai-
lable prior information, we derive the joint posterior distribution

and summarize the estimation approach.

3.1. Prior information

The HRF. According to [7, 8], the HRF can be characterized as

a causal slow-varying function which returns to its baseline after

about 25 sec. These assumptions lead us to select a Gaussian prior
on h ∼ N (0, ‖∂2h‖2/2σ2

h), where :

(∂2
h)dτ ≈ (h(d+1)τ − 2hdτ + h(d−1)τ )/τ 2,∀d = 1 : D − 1.

The “neural” response levels. We assume that different types of

conditions induce statistically independent NRLs i.e., p(a;θa) =Q
p(am; θm) with a = (am)m=1:M , am = (am

j )j=1:J and

θa = (θm)m=1:M . Vector θm denotes the set of unknown hy-
perparameters related to the mth stimulus type.

Since only a few voxels of the ROI may be activated by a gi-

ven condition, we introduce couples of random variables zm
j =

(qm
j , am

j )m=1 : M
j=1 : J where qm

j is a binary random variable that indi-

cates whether voxel Vj is activated (qm
j = 1) or not (qm

j = 0) by

condition m.

Conditional on qm
j = 0, am

j is modelled as a Gaussian random
variable : p(am

j | qm
j = 0) ∼ N (0, v0,m). In contrast, when

qm
j = 1, am

j is modelled as a Gamma random variable to en-

code non-negativity of the response for voxel Vj and condition m
(p(am

j | qm
j = 1) ∼ G(αm, βm)). We thus introduce a Gamma-

Gaussian prior mixture :

p(am
j | θm) =

X
i=0,1

Pr(qm
j = i |λm) p(am

j | qm
j = i, θm),

with Pr(qm
j = 1) = λm, Pr(qm

j = 0) = λ̄m = 1 − λm and
θm = [λm, αm, βm, v0,m]. µ0,m = 0 since it represents the mean

of the NRLs for unactivated voxels.

The low-frequency drift. Vector � = (�j)j=1:J defines the unk-

nown parameters of the orthonormal basis function P . We assume

that � is a random process independent of h such that p(�; σ2
� ) =Q

j p(�j; σ
2
� ) and �j ∼ N (0, σ2

� IQ). In this paper, calculations

are derived in the non informative case, that is when σ2
� → +∞.

The hyperparameters. The complete set of hyperparameters to

be estimated is denoted Θ =
ˆ
ε2, σ2

h , θa

˜
. Without informative

prior knowledge, we consider the following priors for these pa-

rameters : p(ε2j , σ
2
h) = (εjσh)−1, p(θm) ∝ a exp(−aαm)

G(βm, b, c) (v0,mλmλ̄m)−1/2. Values of a, b and c are fixed em-

pirically.

3.2. The joint posterior distribution

Considering the constructed model and assuming no further

prior dependence between parameters, formal application of the

chain rule yields :

p(h, a, �,Θ |y) ∝p(y |h, a, �, ε2) p(a | θa) p(h |σ2
h)

p(�) p(Θ).

Here, we choose to integrate analytically the nuisance variables � :

p(h, a,Θ |y) ∝

„Y
j

ε−N−1+Q
j

«
σ−D

h exp

„
−

htR−1h

2σ2
h

«

exp

„
−

P
j eyt

jQj eyj

2

« Y
m

„
p(θm)

Y
j

p(am
j | qm

j , θm)

«
. (2)

with Qj =
`
IN − P P t

´
/ε2j .

To get samples from this posterior pdf, we use a Gibbs sampler

which consists in building a Markov chain, whose target distribu-
tion is (2), by sequentially generating random samples from the

full conditional pdfs of all the unknown parameters and hyper-

parameters. Finally, PMEs are computed from these realizations

after considering a burn-in period. The sampling scheme for the
different variables (h, a,Θ) is detailed in the next paragraph.

3.3. Computational details

3.3.1. The HRF and its scale.

Let us denote Sj =
P

mam
j Xm. h is N (µh ,Σh)-distributed

with : Σ−1
h =σ−2

h R−1+
P

j St
jQjSj and µh=Σh

P
j St

jQjyj .

Sampling the scale σ2
h amounts to simulating according to

p(σ2
h |h) ∼ IG

`
D/2, htR−1h/2

´
.

3.3.2. The “neural” response levels.

Sampling the mixture is done sequentially for each voxel Vj

and condition m and using two nested loops, the inner corres-

ponding to the stimulus types (e.g., index m) and the outer to

voxels (e.g., index j). We first start with sampling the class (pa-
rameter qm

j ) and then sampling the NRL am
j conditionally to qm

j .

These two steps are as follows. First, the posterior mixture reads :

p(am
j | rest) ∝ p(λm) exp

“
−

1

2

‚‚ej,m − am
j gm

‚‚2

Qj

”
×“

λm p(am
j | qm

j = 1, αm, βm) p(αm, βm)+

λ̄m p(am
j | qm

j = 0, v0,m) p(v0,m)
”
, (3)

with : rest = remaining variables, gm = Xmh, and ej,m = yj −P
n�=m an

j gn. After some calculations, (3) becomes :

p(am
j | rest) ∝

λm
0,j

(2πvm
0,j)

1/2
exp

„
−

`
am

j − µm
0,j

´2

2vm
0,j

«
+

λm
1,j

K
(am

j )αm−1 exp

„
−

`
am

j − µm
1,j

´2

2vm
1,j

«
� �

+ (am
j ) (4)
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with

λm
i,j =

`
1 + λ̃m

1−i,j/λ̃m
i,j

´−1
, i = 0, 1

λ̃m
0,j =

λ̄
1/2
m (vm

0,j)
1/2

λ
1/2
m v0,m

exp

„
(µm

0,j)
2

2vm
0,j

«
,

λ̃m
1,j = p(αm) p(βm)

βαm
m λ

1/2
m K

Γ(αm)λ̄
1/2
m

exp

„
(µm

1,j)
2

2vm
1,j

«
,

K =

Z +∞

0

(am
j )αm−1 exp

„
−

`
am

j − µm
1,j

´2

2vm
1,j

«
d am

j .

with : vm
0,j =

`
v−1
0,m + gt

mQjgm

´−1
, µm

0,j = vm
0,jg

t
mQjej,m,

vm
1,j =

`
gt

mQjgm

´−1
, µm

1,j = vm
1,j

`
gt

mQjej,m − βm

´
. Follo-

wing [9], we consider an exponential prior for αm (here we choose
a = 1) and a Gamma prior for βm : G(βm, b, c) (here we choose

b = 2 and c = 0.1). Note that the normalizing constant K can be

calculated analytically using Parabolic Cylinder functions1 .

Sampling the binary label qm
j consists first in generating um

j from
the uniform pdf U([0, 1]) and second in applying the following

rule : um
j ≤ λm

1,j =⇒ qm
j = 1, otherwise qm

j = 0.

The posterior mixture (4) shows that the conditional distribution

p(am
j |qm

j =1,θm,y) is not standard and so more complex to sample.
To solve for this problem, we resort to a Metropolis-Hastings al-

gorithm in which the instrumental pdf is a truncated normal distri-

bution as in [9]. The sampling of this truncated normal pdf is done

using an accept-reject sampling algorithm [10].

3.3.3. The noise variances.

Sampling the noise variances σ2
ε can be performed in parallel.

Drawing a sample from p(σ2
εj

| rest) is straightforward since this

pdf is an inverse Gamma distribution : p(σ2
εj

| rest) ∼ IG((N +

1 − Q)/2, ‖eyj‖
2
IN−P P t /2).

3.3.4. The weighting probabilities.

Sampling the probabilities λ = (λm)m=1:M can also be pa-

rallelized. Drawing a realization of λm consists in sampling from

a beta pdf : p(λm | qm) ∼ B(J1,m + 1.5, J0,m + 1.5), where

qm = (qm
j )j=1:J . For every condition m, C1,m and C0,m stand

for the sets of activated and unactivated voxels, respectively and

Ji,m = Card [Ci,m], with
P

i Ji,m = J .

3.3.5. The mixture parameters.

The variance of class 0 follows an inverse Gamma pdf :

p(v0,m | zm) ∼ IG
`
(J0,m − 1)/2, ν0,m/2

´
, where :

ν0,m =
P

j∈C0,m
(am

j − η0,m)2 and η0,m = J−1
0,m

P
j∈C0,m

am
j .

Sampling the hyperparameters (αm, βm) is done as in [9] using a
Metropolis-Hastings algorithm for αm with a Gamma instrumen-

tal density and simulating βm according to a Gamma distribution

(for more details see [9]).

4. SIMULATION RESULTS

We tested our method on simulated artificial fMRI data and

compared it to previous work [3]. We simulated a random inter

1http ://mahieddine.ichir.free.fr/

mixed sequence of indexes coding for M = 2 different stimuli.

Two sets of trials were thus generated, each of them correspon-

ding to a specific stimulus. These binary time series were multi-
plied by a stimulus-dependent scale factor. The ROI R consisted

of J = 60 voxels, with J1,1 = 34 activated voxels for condi-

tion 1, corresponding to voxels 20 to 53 in Fig 1(b) (J0,1 = 26)

and J1,2 = 22 activated voxels for condition 2, corresponding to
voxels 23 to 38 and voxels 55 to 60 in Fig 1(d) (J0,2 = 38). We

decided to simulate positive NRLs using Gamma distributions :

a1
j∈C1,m=1

∼ G(α1 = 3, β1 = 1) (lower signal to noise ra-

tio for condition 1), a2
j∈C1,m=2

∼ G(α2 = 10, β2 = 2), and

a
1,2
j∈C0,m

∼ N (0, σ2
0,m = 0.1).

For all voxels, the binary stimulus sequence was convolved with
the canonical HRF hc

2, whose exact shape appears in Fig. 1(a) in

�-line. A white Gaussian noise bj was then added to the stimulus-

induced signal
P

m am
j Xmh in every voxel Vj . Space-varying

low-frequency drifts P �j (generated from a cosine transform ba-
sis which coefficients �j are drawn from a normal distribution)

were also added to the fMRI time courses.

Fig 1(b)-(c) show the estimated NRLs for the first condition in

all voxels using a two-Gaussian mixture model (2GM) and the
Gamma-Gaussian model (GGaM), respectively. Fig 1 (d)-(e) illus-

trate the behavior of these estimates for the second condition. Using

the GGaM, we get a more accurate estimation of both the NRLs

(smaller errors bars and lower mean square error) and the labels,
while no significant difference allows to discriminate the HRF es-

timates, both being very close to the true HRF shape. Fig 1 (e)-(f)

show the posterior mean estimates p̄m
j = 1

K0−I+1

PK0

k=I(q
m
j )k,

of the posterior probability p(qm
j = 1 |y) of deciding voxel Vj lies

in class 1 for condition m (symbols ∗ and ◦ represent these values
for both prior mixture models GGaM and 2GM, respectively). This

means that when p̄m
j < 0.5, Vj is considered as unactivated. These

results confirm what we expected : using GGaM, we observe a hi-

gher value of p̄m
j when Vj is truly activated for condition m and a

lower value otherwise.
Finally, Fig 1(f) compares the sensitivity of both models. It is

shown that 4 false negative voxels (voxels declared as unactivated

while they belong to class 1) are estimated by 2GM, while only one

voxel is retrieved by the inhomogeneous prior mixture (GGaM).
This is emphasized in Fig 1(f) by ◦ and ∗ symbols appearing be-

low the y = 0.5 dotted line.

5. EXPERIMENTAL RESULTS

Real fMRI data were recorded during an experiment, which

consisted of a single session of N = 125 scans lasting TR = 2.4 s

each. The main goal of this experiment was to quickly map se-

veral brain functions. The chosen ROI R1 is a Statistical Para-
metric Mapping (SPM) cluster obtained from thresholded t maps

at p = 0.001 (corrected for multiple comparisons). This cluster

results from the “audio minus video” comparison that elicits ac-

tivation when the audio stimulus gives a stronger response than
the video one. As a consequence, the voxels in R1 should not be

involved in visual perception a priori. Fig 2(a)-(e) show only the

results for the visual stimulus. In R1, Fig. 2(b)-(c) show the maps

of the NRL estimates using 2GM and GGaM, respectively : no
major difference is observed between the NRL estimates provided

by the different models. Fig 2(d)-(e) demonstrate that a significant

2used in SPM2 : www.fil.ion.ucl.ac.uk/spm/
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decrease of false positive rate is achieved using the GGaM : almost

all voxels appear in black (not activated).

6. CONCLUSION

We proposed an extension of [3] to make the detection esti-

mation approach of brain activity more robust. We demonstrated

the improvement brought by this extension both on simulated and

real fMRI data and specially in terms of decreased false positive
rate. Other extensions would consist in modeling the deactivation

process with a third class in the mixture, and accounting for the

serial correlation of fMRI data using an AR(1) model as in [4].
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Fig. 1. (a) true HRF hc (�-), HRF estimate (same result using

2GM and GGaM) (◦-).(b)-(c) NRL estimates a1
j using the 2GM

and the GGaM, respectively. Symbols � and ◦ correspond to true

and the estimated NRL values, respectively. (d)-(e) Same results

for a2
j . (f)-(g) p̄1

j and p̄2
j , where symbols ∗ and ◦ correspond to

GGaM and 2GM, respectively. The error bars are derived from the

sampled posterior variances of the NRLs.
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Fig. 2. (a) HRF estimate for R1 (same result using 2GM and

GGaM). (b)-(c) The video NRL estimates using the 2GM and

GGaM respectively. (d)-(e) Classification maps for the visual

condition in R1 using the 2GM and GGaM respectively (dark :

class 0, white : class 1).
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