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ABSTRACT

Audio-visual (AV) biometrics offer complementary informa-
tion sources, and the use of both voice and facial images for bio-
metric authentication has recently become economically feasible.
Therefore, multi-modality adaptive fusion, combining audio and
visual information, offers an efficient tool for substantially improv-
ing the classification performance. In terms of implementation, we
propose to integrate an audio classifier (based on Gaussian mixture
models) and a visual classifier (based on FaceIT, a commercially
available software) into a well-established mixture-of-expert fu-
sion architecture. In addition, a consistent fusion strategy is in-
troduced as a baseline fusion scheme, which establishes the lower
bound of the “consistent region” in the FAR-FRR ROC. Our sim-
ulation results indicate that the prediction performance of the pro-
posed adaptive fusion schemes fall in the consistent region. More
importantly, the notion of consistent fusion can also facilitate the
selection of the best modalities to fuse.

1. INTRODUCTION

Audio-visual (AV) biometrics has long been an active area of re-
search, primarily because of the promise it can bring to practical
applications. These two independent and complementary informa-
tion sources are ideal candidates for enhancing biometric system
reliability. With the recent introduction of third-generation mo-
bile services, the use of both voice and facial images for biometric
authentication has become practical and economically viable.

Multi-modality adaptive fusion offers an efficient tool for im-
proving the classification performance of AV biometric systems.
For example, voice biometrics can suffer severe performance degra-
dation under a noisy acoustic environment, but facial images are
unaffected. Conversely, facial image quality can be severely af-
fected in poor lighting conditions, but lighting has no effect on
voice quality. This paper explains how consistent fusion can bene-
fit audio-visual biometric authentication. Accordingly, a Mixture-
of-Expert (MOE) type of fusion network as shown in Figure 1 is
proposed. Several variants of fusion networks are studied and their
performance compared.

2. AUDIO AND VISUAL MODALITIES

The XM2VTSDB corpus [1] was used to demonstrate the benefit
of consistent fusion. The corpus consists of the audio and video
recordings of 295 subjects taken over a period of four months.
Each subject participated in four recording sessions, each with two
utterances and two video shots.
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Fig. 1. Fusion network in an MOE (mixture-of-expert) architec-
ture. Each vector sequence is compressed into a local score. The
local scores are then fused by a gating network.

Configuration II of the corpus was adopted in the evaluation.
More precisely, the database was divided into 200 clients, 70 im-
postors (part of the 95 impostors in DVD003b) for testing, and
25 pseudo-impostors (the remaining impostors in DVD003b) for
finding decision thresholds or other system parameters. For each
client, the first two sessions were used for training, and the last
session was used for testing. Each client was impersonated by the
70 impostors using the audio and video data of the four sessions.

Audio Modality. Because the original audio files were cap-
tured in a quiet, controlled environment using a high-quality mi-
crophone, the equal error rate using the audio data alone is very
low (about 0.7%); as a result, performing audio-visual fusion was
unnecessary. To simulate a more realistic acoustic environment,
GSM codec distortion and factory noise [2] at an SNR of 4dB were
introduced to the sound files (see [3] for details). Twelve MFCCs
and their time derivative were extracted from the noisy, transcoded
files using a 28ms Hamming window at a rate of 71Hz. Cepstral
mean substraction was performed on all MFCCs to remove linear
channel effects.

The training sessions of 200 client speakers in the speaker set
were used to create a 128-center GMM background model. The
background model was then adapted to speaker models using MAP
adaptation [4]. As defined in Configuration II of XM2VTSDB,
two sessions (i.e., four utterances) per speaker were used for model
training.

Visual Modality. Similar to audio files, the quality of video
files in the corpus is also very good, making AV fusion unnec-
essary (as face verification on the original video data already ap-
proaches 0% EER). Distortion was introduced to the images of the
video sequences using PhotoShop Version 7.0 (see [3] for details).
The noise-added image sequences were input to Identix’s Face
Verification SDK [5] to locate the head and compute the scores,
which have a range of 0 to 10. The higher the score, the more
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likely the claimant is genuine.

Normalization of Scores. Because there were only 200 client
subjects with two verification utterances per subject, a client-
independent decision threshold was used to increase the resolution
of the error rates. Specifically, the 400 client scores (200 clients
× 2 utterances per client) were lumped together and the scores
were compared against the 120,000 impostor scores (200 clients
× 75 impostors per client × 8 utterances per impostor) to obtain a
client-independent EER and a DET plot.

Systems that use client-independent thresholds must ensure
that the single threshold falls into the right range of all client and
impostor score distributions. This can be achieved by using Z-
norm [6]: s

(m)
norm = (s(m) − µ

(m)
b )/σ

(m)
b , m ∈ {A, V }, where

s(m) is the mean of claimant’s audio scores (when m = A) or
visual scores (when m = V ), and µ

(m)
b and σ

(m)
b are the mean

and standard derivation of the client-dependent impostor scores,
respectively. These impostor scores can be obtained during train-
ing by testing a client model against pseudo-impostor attempts. In
this work, the impostor observations were obtained from the 25
pseudo-impostors defined in Configuration II of the XM2VTSDB
corpus.

3. FUSION OF AUDIO AND VISUAL SCORES

One utterance and one video shot from the claimant were obtained
in a verification session. Then, the utterance and the video shot
were divided into two equal-length subutterances and two equal-
length subvideo shots. Feeding these subutterances and subvideo
shots to the speaker verification system and the face verification
system gives two streams of audio scores and two streams of vi-
sual scores. Multisample fusion [3,7] was applied to the two audio
score streams and also to the two visual score streams indepen-
dently to obtain the mean of the fused audio scores s(A) and the
mean of the fused visual scores s(V ).

3.1. DET Performance Based on Single Modality

Let the distribution of the client scores and impostor scores from
the audio (or visual) channel be p(s(X)|Λc) and p(s(X)|Λi), re-
spectively, where X represents a sequence of feature vectors de-
rived from an utterance or a video shot.1 A test sequence X from
a claimant is classified as coming from the true client if

log p(s(X)|Λc) > log p(s(X)|Λi) + η, (1)

otherwise it will be classified as coming from an impostor. By
counting the number of misclassified test sequences, we can com-
pute the FAR and FRR (or precision, specificity, and sensitivity
in other applications) corresponding to a single point on the ROC
curve or DET curve [8]. To produce the entire spectrum of FAR
and FRR, we can gradually adjust the running variable η to change
from small to large values. For example, we set η > 0 (resp.
η < 0) when a lower FAR (resp. FRR) is desired. Note that be-
cause s(X)’s are scalers, the DET or ROC can also be obtained by
sweeping a decision threshold ζ from the minimum to the maxi-
mum value of the test scores s(X) in the following decision rule:

If s(X)

{
> ζ X is from a client
≤ ζ X is from an impostor.

(2)

1For clarity, the superscript in X
(A) and X

(V ) were omitted.

Figure 2(a) shows the FRR against FAR of face-only, voice-
only, and face plus voice systems. Evidently, the crossing point of
the two DET curves allows us to choose the best system in different
applications. For example, the visual features have lower FRRs in
the low FAR region, whereas the audio features have lower FRRs
in the high FAR region. This provides very crucial information for
the fusion strategy proposed in the next section.

3.2. DET Performance Based on Fusion of Multi-modalities

The DET (or ROC) corresponding to the fusion of multi-modalities
can be obtained by extending the aforementioned idea to multi-
modality cases. More specifically, s(X)’s in Eq. 1 become two-
dimensional vectors s(X(A), X(V )) = [s(X(A)) s(X(V ))]T

comprising the scores derived from two modalities, and Λc and
Λi become 2-D Gaussian mixture models representing the score
distributions of the client and impostor classes, respectively. By
counting the number of test scores s(X(A), X(V )) falling on the
wrong side of the decision boundary, we can compute the FAR and
FRR (or precision, specificity, and sensitivity) corresponding to a
single point on the DET curve. The entire spectrum of FAR and
FRR and their corresponding decision boundaries (see Figure 4)
can then be obtained by adjusting the value of η in Eq. 1.

3.3. Consistent Fusion

A minimum objective of fusion is naturally to deliver a consistent
fusion [9], which by definition has an equal or better performance
than any individual modalities in the entire FRR/FAR region.

As to which modalities to fuse, a natural selection criteria is
to adopt the modalities that offer most complementary informa-
tion. Again, an important clue can be obtained by examining the
DET curves, as exemplified by Figure 2(a). Specifically, the au-
dio modality shown in Figure 2(a) has a relatively lower FRR in
the high-FAR region but a relatively higher FRR in the low-FAR
region. In contrast, the visual modality has just the opposite per-
formance. In this case, the two DET curves have a crossover point.
Therefore, these two modalities are truly complementary to each
other and can serve as ideal fusion candidates.

4. FUSION NETWORK IN MIXTURE-OF-EXPERT
(MOE) ARCHITECTURE

Once we know which modalities to fuse, the next question to ad-
dress is the fusion strategy. One possibility is to consider a di-
rect fusion scheme, where the original feature vectors are concate-
nated to form an expanded vector to be collectively processed in
the fusion layer. However, our prior experiences suggest that the
direct feature fusion has consistently inferior performance com-
pared with other fusion approaches. This may be attributed to
the exceedingly large vector dimension after feature concatena-
tion. In particular, when there exists a limited amount of train-
ing data, it is usually more difficult to model the distribution of
high-dimensional vectors and consequently the performance dete-
riorates severely.

Based on this experience, we propose an indirect fusion scheme
illustrated in Figure 1, where each feature vector is processed by a
local expert and result in a local score. From the architectural de-
sign perspective, we adopt a well established Mixture-of-Expert
(MOE) architecture comprising two layers: (a) the lower layer
contains several local experts, each of which produces a local score
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Fig. 2. Diagram illustrating the concept of consistent fusion. (a)
Region of consistent fusion (the light blue area). (b) The adaptive
hard switching fusion scheme guarantees a consistent fusion re-
sult. Note that at a specific FAR, the vertical decision boundaries
based on the visual modality – boundaries #1, #2, #3, and #4 –
have an FRR lower than that of the audio modality; whereas at a
specific FRR the horizontal decision boundaries based on the audio
modality – boundaries #6, #7, #8, and #9 – have an FAR lower than
that of the visual modality. Therefore, the boundaries are switched
from vertical to horizontal ones around the crossover point. At
the crossover point, the boundary (#5) can be either horizontal or
vertical as they deliver exactly the same FRR/FAR performance.

based on a single modality; and (b) the upper layer contains a fu-
sion (or gating) network whose function will be elaborated below.

There are many ways to combine the audio and visual scores.
Typical examples include (1) hard switching fusion network, (2)
sum rule and product rule in rule-based fusion, and (3) support
vector machines, multilayer perceptrons, and binary decision trees
in learning-based fusion. Research has shown that the sum rule
and support vector machines are generally superior [10, 11]. They

will be addressed in the subsequent discussions.

4.1. Adaptive Hard-Switching Networks

A hard-switching network can be implemented by the following
scheme.

1. Determine the crossover point of DET A and DET B. De-
note the FRR and FAR at the crossover point as FRRcr

and FARcr , respectively. For example, in Figure 2(a), the
crossover of the audio modality and the visual modality is
at the point FRRcr = 4.0% and FARcr = 2.5%.

2. If we want to guarantee an FAR to remain lower than or
equal to FARcr = 2.5% while keeping the FRR to a min-
imum, then the decision boundary pertaining to Model B
should be adopted, i.e., the visual modality in Figure 1. On
the other hand, if we want to be sure of an FRR no higher
than FRRcr = 4.0% while keeping the FAR to a minimum,
then we should adopt Model A, i.e., the audio modality.

The hard-switching scheme will yield basically a lower bound per-
formance of any consistent fusion, as shown in the light-blue re-
gion in Figure 2).

Note that this scheme requires an additional data set (called
held-out set) for determining the thresholds corresponding to the
crossover point, because the true labels of the test data are sup-
posed to be unknown. Once the crossover point is found, the DET
corresponding to the test set can be obtained by applying hard-
switching at the crossover point. Under such experimental proce-
dure, a consistent performance can continue to hold up only under
the additional assumption that the held-out data set shares the same
statistics as the testing set.

4.2. Adaptive Weighted Combination Networks

Mathematically, denote the fusion score as

s(A,V ) ≡ s(X(A,V )) = αs(X(A)) + βs(X(V )). (3)

In the hard-switching scheme, we have either α = 1, β = 0 or
α = 0, β = 1. In contrast, one may adopt a linear soft fusion
scheme such that 0 ≤ α, β ≤ 1 and α + β = 1. In many cases,
such a soft fusion scheme can lead to better-than-lower-bound per-
formance, as explained in Figure 3. The optimal values of α and β
can better be derived via prominent machine learning techniques,
such as Fisher classifiers and support vector machines (SVMs)
with a linear kernel [12]. Unfortunately, it is known that linear
classifiers often have limited discriminating power.

4.3. Adaptive Nonlinear Fusion Networks

The hard-switching and linear combination schemes described ear-
lier can only produce linear decision boundaries to separate the
positive (client) and negative (impostor) classes in the score space.
To allow more flexible decision boundaries, we can use nonlinear
classifiers (e.g., SVMs [12] or decision-based neural networks [3])
to combine the local scores. Specifically, a 2-input SVM can be
trained to compute the fused score

s(A,V ) =
∑

j∈S
αjyjK(s, sj) + b, (4)

given the input s = [s(X(A)) s(X(V ))]T . In Eq. 4, αj , j ∈ S,
are the Lagrange multipliers, S contains the indexes to the support
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Fig. 3. (a) On one hand, with carefully designed gating network,
a proper weighting could lead to performance better than that of
consistent fusion. (b) On the other hand, an improper weighting
could lead to inconsistent fusion results.

vectors sj , yj ∈ {−1, +1}, b is a bias term, and K(s, sj) is a
kernel function. The most common kernels are polynomial kernels
and radial basis function kernels. Ben-Yacoub et al. [11] obtained
the best results using the polynomial kernel.

Figure 4 illustrates the audio and visual scores and the decision
boundaries created by a polynomial SVM and a weighted linear
combiner (α = β = 0.5 in Eq. 3) for the verification of claimants
in XM2VTSDB. Evidently, the SVM is more capable in separating
the client scores from the impostor scores.

Let us now take a closer look at the cross-validation accuracies
in terms of FAR and FRR. Figure 2(a) shows the DET performance
based on hard switching, linear fusion, and adaptive nonlinear fu-
sion (SVM). Evidently, SVM fusion attains the best performance.

5. CONCLUSIONS

In this paper, we have proposed the notion of consistent fusion and
demonstrated its applicability via audio-visual biometric authenti-
cation experiments. The consistent fusion framework leads nicely
to several adaptive fusion schemes, namely hard-switching, linear
combination, and adaptive nonlinear fusion using SVMs. Results
have further justified that consistent fusion can benefit audio-visual
biometric authentication. Moreover, we advocate the conjecture
that it is not uncommon to have different performance require-
ment in different applications, i.e., some applications may opt for
low FAR and some may opt for low FRR. Our results suggest that
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Fig. 4. Diagram illustrating the concept of Adaptive Nonlinear
Fusion. Usually, it can lead to results better than the consistent
fusion performance.

the notion of consistent fusion provides a valuable framework for
choosing and fusing different modalities in multimodal biometric
authentication. More importantly, in case there are more than two
modalities, the same framework can also facilitate the selection of
the best modalities to fuse (see [13]).

6. REFERENCES

[1] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre,
“XM2VTSDB: The extended M2VTS database,” in Proc. AVBPA’99,
Washington DC, 1999.

[2] http://spib.rice.edu/spib/select noise.html.

[3] S. Y. Kung, M. W. Mak, and S. H. Lin, Biometric Authentication:
A Machine Learning Approach, Prentice Hall, Upper Saddle River,
New Jersey, 2005.

[4] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digital Signal Processing,
vol. 10, pp. 19–41, 2000.

[5] http://www.identix.com.

[6] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normal-
ization for text-independent speaker verification systems,” Digital
Signal Processing, vol. 10, pp. 42–54, 2000.

[7] M. W. Mak, M. C. Cheung, and S. Y. Kung, “Robust speaker veri-
fication from GSM-transcoded speech based on decision fusion and
feature transformation,” in Proc. ICASSP, 2003, pp. 745–748.

[8] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przy-
bocki, “The DET curve in assessment of detection task performance,”
in Proc. Eurospeech’97, 1997, pp. 1895–1898.

[9] S. Y. Kung and M. W. Mak, “A machine learning approach to dna
microarray biclustering analysis,” in 2005 IEEE International Work-
shop on Machine Learning for Signal Processing, Mystic, Connecti-
cut, Sept. 2005.

[10] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining clas-
sifiers,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[11] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of face
and speech data for person identity verification,” IEEE Trans. on
Neural Networks, vol. 10, no. 5, pp. 1065–1074, 1999.

[12] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[13] S. Y. Kung and M. W. Mak, “Machine Learning for Multi-Modality
Genomic Signal Processing,” IEEE Signal Processing Magazine,
May 2006.

V ­ 1088


