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ABSTRACT

This paper proposes an automatic stream-weight and threshold es-
timation method for noise-robust speaker verification using multi-
stream HMMs integrating segmental and prosodic information. The
proposed method simultaneously optimizes stream-weights and a
decision threshold by combining the linear discriminant analysis (LDA)
and Adaboost techniques. Experiments were conducted using Japanese
connected digit speech contaminated by white noise with various
SNRs. In this experiment, a target ratio of false acceptance rate
(FAR) and false rejection rate (FRR) was set by 1:1 so as to adjust
them to approach an equal error rate (EER). Experimental results
show that the proposed method effectively estimates stream-weights
and thresholds so that FARs and FRRs are adjusted to EERs in most
of the SNR conditions.

1. INTRODUCTION

Increasing noise-robustness is one of the key issues for constructing
practical speaker verification systems. We have proposed a noise-
robust speaker verification method which uses prosodic information
in combination with segmental (spectral envelope) information [1].
This method uses a multi-stream HMM technique to integrate fun-
damental frequency (F0) features and MFCC features; we call the
method “multi-steam speaker verification”. We have shown that
verification performance can be increased in noisy environments by
combining MFCC features with F0 features extracted by the Hough
transform based noise-robust method [2].

In order to construct practical systems, system parameters such
as stream-weights of multi-stream HMMs and decision thresholds
need to be estimated before verification [3, 4, 5]. As for stream-
weights, we have already proposed an optimization method [3] using
the linear discriminant analysis (LDA) and Adaboost technique [6].
In this method, the stream-weights are automatically optimized ac-
cording to the noise conditions of a development set. Experimen-
tal results using Japanese connected digit speech contaminated with
white noise showed that optimum stream-weights were obtained by
the proposed method in various SNR conditions.

In this paper, we propose an automatic threshold estimation method
for multi-stream speaker verification based on the same framework
as[3]. Since the optimum threshold of the multi-stream speaker ver-
ification is variable according to the setting of stream-weights, it is
necessary to simultaneously estimate the threshold and the stream-
weights. The threshold needs to be determined according to a target
balance of false acceptance (FA) and false rejection (FR), which is
given by a system developer.

This paper is organized as follows. Section 2 explains a speaker
verification method using multi-stream HMMs integrating segmen-
tal and prosodic information. In Section 3, our stream-weight and
threshold optimization method based on the LDA and the Adaboost
is explained. Experimental results are presented in Section 4, and
Section 5 concludes this paper.

2. SPEAKER VERIFICATION USING MULTI-STREAM
HMMS

Our speaker verification method [1] integrates segmental and prosodic
information using multi-stream HMMs. The strategy for integration
is explained below.

2.1. Integration of segmental and prosodic features

Each segmental feature vector has 25 elements consisting of 12 MFCC,
their deltas and the delta log energy. The window length is 25ms and
the frame interval is 10ms. Cepstral mean subtraction (CMS) is ap-
plied to each utterance.

The prosodic feature vector consists of log F0 and ∆ log F0. F0

is extracted by a noise-robust method based on the Hough transform
[2]. The segmental and prosodic feature vectors are combined at
each frame to build a segmental-prosodic feature vector.

2.2. Integration of segmental and prosodic models

The proposed method was evaluated using four-connected-digit speech
in Japanese. Since timing of the change of F0 transitions, such as
“rising” and “falling”, is highly related to that of CV syllable transi-
tions in Japanese connected digit speech, segmental and prosodic
features are integrated in our method using syllabic unit HMMs.
The integrated syllable HMM is denoted by “SP-HMM (Segmental-
Prosodic HMM)”.

In order to make SP-HMMs, S-HMMs (Segmental HMMs) and
P-HMMs (Prosodic HMMs) are first trained separately by segmen-
tal and prosodic features. Then, the S-HMMs and the P-HMMs are
combined to construct SP-HMMs. Gaussian mixtures in the seg-
mental stream of SP-HMMs are tied with corresponding S-HMM
mixtures, while the mixtures in the prosodic stream are tied with
corresponding P-HMM mixtures.

2.3. Multi-steam modeling

SP-HMMs are modeled as multi-stream HMMs. In recognition, the
log-probability bj(�

t
sp) of generating t-th frame segmental-prosodic
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Fig. 1. Flow of speaker verification process.

observation �t
sp at state j is calculated by:

bj(�
t
sp) = λsbj(�

t
s) + λpbj(�

t
p) (1)

where bj(�
t
s) is the log-probability of generating a segmental fea-

ture vector �t
s, and bj(�

t
p) is the log-probability of generating a

prosodic feature vector �t
p. λs and λp are weighting factors for the

segmental and prosodic streams, respectively. They are constrained
by λs + λp = 1 (0 ≤ λs, λp ≤ 1).

2.4. Verification score

The verification score after observing a feature set � is denoted by
q(�), which is calculated as

q(�) = l(�|C) − l(�|G) (2)

where l(�|C) is a frame-averaged log-likelihood value with claimed
speaker’s SP-HMM C and l(�|G) is a frame-averaged log-likelihood
value with general speaker’s SP-HMM G.

The log-likelihood values for segmental-prosodic feature vector
�sp are defined using Eq. (1) as follows:

l(�sp|C) = λsl(�s|C) + λpl(�p|C), (3)

l(�sp|G) = λsl(�s|G) + λpl(�p|G). (4)

Then, the verification score q(�sp) is calculated as

q(�sp) = λsq(�s) + λpq(�p). (5)

If the score is larger than a threshold value θ, the speaker is ac-
cepted as the claimed speaker. Therefore, the discriminant function
is z = q(�sp) − θ. If z is positive, the speaker is accepted, and if it
is less than or equal to 0, the speaker is rejected as being an imposter.
The flow of speaker verification process is shown in Fig. 1.

3. AUTOMATIC STREAM-WEIGHT AND THRESHOLD
OPTIMIZATION METHODS

3.1. Estimation by the LDA

As described in section 2.4, speaker verification by SP-HMM uses
the following discriminant function z:

z = q(�sp) − θ (6)

= λsq(�s) + λpq(�p) − θ. (7)

Since z is a linear function, the stream-weights and the threshold
are estimated as coefficients of a linear function obtained by the
LDA. The Estimation process is as follows. First, segmental and
prosodic scores, q(�s) and q(�p), calculated from both a claimed
speaker’s and an impostor’s data included in the development set are
plotted in two-dimensional space composed by q(�s) and q(�p).
Then, the LDA is applied to the space so as to obtain the discrim-
inant function z which distinguishes score distribution of claimed
speakers from that of impostors. Since the obtained function z =
asq(�s) + apq(�p) − b does not satisfy as + ap = 1, it is trans-
formed so that the sum of the coefficients becomes 1. The estimated
values of the stream-weights and the threshold are

λ̂s =
as

as + ap
, λ̂p =

ap

as + ap
, θ̂ =

b

as + ap
. (8)

Thus, all the parameters are estimated according to the LDA crite-
rion which maximizes discriminant performance between claimed
speakers and impostors.

3.2. Optimization by the Adaboost

The Adaboost, a class of boosting algorithms, constructs a high per-
formance classifier by combining sequentially trained simple classi-
fiers [6]. In our optimization method, the linear discriminant func-
tions obtained by the LDA are used as simple classifiers for the Ad-
aboost. By doing so, we can estimate more accurate weights and
thresholds than those obtained by only using the LDA. The stream-
weights and the threshold are optimized according to a target ra-
tio of false acceptance rate (FAR) and false rejection rate (FRR),
FAR : FRR = α : (1 − α), given by the system developer.

Details of the optimization algorithm is as follows, where n rep-
resents the number of data in the development set and T represents
the number of iterations. Let {xi} (i = 1, · · · , n) be the devel-
opment data plotted into the two-dimensional space composed by
qs(�s) and qp(�p), and {wi} (i = 1, · · · , n) be the weights of
each data.

1. Initialize the weights of data wi = 1/n.

2. Iterate the following processes for t = 1, · · · , T .

(a) Choose n samples from {xi} allowing duplications, us-
ing {wi} as a probability distribution.

(b) Obtain a linear discriminant function

zt = λ(t)
s qs(�s) + λ(t)

p qp(�p) − θ(t) + δt−1 (9)

by applying the LDA to the resampled data {x′
i}, where

δt−1 is an offset value for adjusting the balance be-
tween FAR and FRR to the target ratio α : (1 − α).
The offset value is obtained from the {t − 1}-th boost-
ing iteration, where the initial value δ0 is set at 0.
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(c) Classify all the data in the development set {xi} using
zt, and calculate FAR, FRR, and the weighted discrim-
inant errors εt, εFA, and εFR:

FARt =

�
i: xi is FA 1�

i: xi is an imposter 1
, (10)

FRRt =

�
i: xi is FR 1�

i: xi is a claimed speaker 1
, (11)

εt =
�

i: misclassify xi

wi, (12)

εFA =

�
i: xi is FA wi�

i: xi is an imposter wi
, (13)

εFR =

�
i: xi is FR wi�

i: xi is a claimed speaker wi
.(14)

The offset value δt is determined by the following equa-
tion:

δt = β · 1 − FARt/FRRt

1 + FARt/FRRt
. (15)

(d) Calculate ct as the weight of zt by the following equa-
tions:

ct = cεt · cdt , (16)

cεt =
1

2
log

1 − εt

εt
, (17)

cdt =
1

2
log

1 − dt

dt
, (18)

dt = |(1 − α) · FARt − α · FRRt|. (19)

(e) Update wi by the following formula:

wi =

�
wi × e−ccostt (i: classify xi accurately)
wi × eccostt (i: misclassify xi)

where ccostt is defined by using a cost function costt
as follows:

ccostt =
1

2
log

1 − costt

costt
, (20)

costt = (1 − α) · εFA + α · εFR. (21)

(f) Normalize {wi} to meet
�n

i=1 wi = 1.

3. Let the conclusive classifier z be the weighted majority vote
of zt:

z =

T�
t=1

(ctzt). (22)

4. Normalize the coefficients of z so that the sum of them be-
comes 1.

5. Set the normalized coefficients as estimated stream-weights
and the threshold.

In the original Adaboost algorithm, the conclusive classifier z is
defined by z =

�T
t=1 {ct × sign(zt)}. However, it cannot be di-

rectly used for stream-weight estimation, since its form is not a linear
discriminant function. Thus, we approximate z by z =

�T
t=1 (ctzt)

as shown in Eq.(22).
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Fig. 2. Training, testing and development sets for the verification
experiment when the speaker M01 is used as the claimed speaker.

4. EXPERIMENTS

4.1. Database

Speech data were recorded at five sessions separated by intervals
of approximately one month. The data were collected from 36 male
speakers and sampled at 16kHz with a 16bit resolution. Each speaker
uttered 50 strings of four connected digits in Japanese at each ses-
sion.

The set of data recorded at sessions 1 ∼ 3 were used for train-
ing and data recorded at sessions 4 and 5 were used for parame-
ter optimization and testing. The database was separated into three
groups in terms of speakers as shown in Fig. 2. Figure 2 shows the
case where speaker M01 was used as the claimed speaker. The gen-
eral speaker’s model was trained using utterances by all the speakers
in the speaker group 2, which did not include the claimed speaker
nor the set of data used for optimizing the stream-weights and the
threshold. In the case where speaker #01 was used as the claimed
speaker, an additional experiment was conducted, in which the gen-
eral speaker’s model was trained by the data of speaker group 3 and
the weights and the threshold were optimized by the data of speaker
group 2. There are six combinations of the training set, the develop-
ment set and the testing set. The result averaged over the six experi-
ments was used for evaluation.

White noise was added to the training set at a 30dB SNR level to
increase robustness against noisy speech, and the development and
testing sets were contaminated with white noise at 5, 10, 15, 20 and
30dB SNR conditions.

The experiments were conducted at the condition of α = 0.5,
that is, adjusting FAR and FRR to an equal error rate (EER). The
number of iterations and the parameter β to determine the offset
value δt were experimentally set to 200 and 0.005, respectively.

4.2. Experimental results

Table 1 shows the FARs and FRRs obtained by using the proposed
optimization methods in each SNR condition. The results in “LDA
only” indicate the results using the stream-weights and the threshold
estimated by only the LDA; and, the results in “Adaboost” are ob-
tained by the proposed optimization method using the boosting tech-
nique. The bottom line shows the EERs in which the stream-weights
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Table 1. Comparison of verification results with different stream-weights and threshold optimization methods in various SNR conditions.

Optimization method
SNR (dB)

30 20 15 10 5

LDA only
FAR (%) 1.22 4.82 8.15 9.55 10.9
FRR (%) 0.51 2.68 11.4 27.6 50.9

Adaboost
FAR (%) 1.47 3.72 9.35 17.2 26.4
FRR (%) 0.68 3.43 8.66 15.6 23.2

Manual optimization ERR (%) 0.73 3.39 9.21 16.3 24.3

and the threshold were manually optimized using the development
set.

It has been confirmed that the Adaboost-based optimization method
more effectively adjusts the FARs and FRRs to EERs than the method
using only the LDA at all conditions except the 30dB SNR condition.
Our preliminary closed-condition experiments using the test set for
optimizing stream-weights and threshold show that the Adaboost-
based method works well even at the 30dB SNR condition. This
means that degradation of the optimization performance at the 30dB
SNR condition is due to the mismatch of data distributions between
the development set and the test set.

5. CONCLUSIONS

This paper proposed an automatic stream-weight and threshold esti-
mation method using LDA and Adaboost for multi-stream speaker
verification. Experimental results using Japanese connected digit
speech contaminated with white noise show that the proposed method
effectively estimates stream-weights and thresholds so that the FARs
and FRRs are adjusted to reach EERs in most of the SNR conditions.
The proposed method is, in principle, applicable to any FAR-FRR
ratio.

Our future works include: 1) evaluating optimization perfor-
mance of the proposed method at various α (FAR-FRR ratio) condi-
tions, 2) evaluating performance when applying the proposed opti-
mization method to other multi-stream speaker verification systems
using a larger number of streams, and 3) investigating a parameter
optimization method using a test set without having labelled speaker
IDs, instead of using a development set.
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