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ABSTRACT

We describe a personal identity verification system based on
lip dynamics biometric. The lip shape is represented in terms
of a B-spline model, tracked over time. The coordinates of the
11 control points of the B-spline model are used as features
for each frame. An utterance consisting of N frames produces
a sequence of 22 dimensional feature vectors that is matched
to the template using dynamic time warping. The verification
error rate achived by the systems on the XM2VTS database is
about 14%. By fusing the system with face and voice biomet-
rics the error rate is reduced to a fractiopn of one percent.

1. INTRODUCTION

References to lip-reading applications for speech recognition
and synthesis are abundant in the literature but, other than the
work done by Lüttin [1] or Mason et al (e.g. [3]), there does
not seem to be that much research on lip-based speaker verifi-
cation (recognition). However, as suggested in [2], even very
coarse lip features can be used as behavioural biometric char-
acterisation of the speaker or as a means for detecting the lip
shape status which in turn can serve as a control information
for face coding or recognition. The latter was demonstrated
in [9], where a B-spline lip tracking system was used to pro-
vide control information regarding the state of the lip shape
which is used by a conventional eigenface-based face verifi-
cation system to confirm or reject a claimed personal identity.
The performance of the system tested on the M2VTS database
[4] showed a promising improvement over the unimodal ap-
proach. This improvement derives from the achieved reduc-
tion in the population entropy of the models, thus minimising
the probability of impostor acceptance.

In this paper it will be shown how the information sup-
plied by the lip tracker can be advantageously used to im-
plement a text-dependent speaker verification system based
exclusively on lip shape features. This verification modality
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is thereafter combined with other visual and vocal experts, re-
sulting in improved overall performance. The experiments re-
ported in this section were carried out in the XM2VTS database
[5] according to the Lausanne Protocol [6]. The results obatined
are illustrative of the kind of improvements to expect.

2. DESCRIPTION OF THE XM2VTS DATABASE AND
THE LAUSANNE PROTOCOL

The XM2VTS database contains synchronised image and speech
data as well as sequences with views of rotating heads. The
database includes recordings of 295 subjects taken at one month
intervals. In each session two recordings were made, each
one consisting of a speech shot and a head rotation shot. The
speech shot consisted of a frontal face recording of each sub-
ject during speech production, namely the utterance of three
speaking sequences: two digit sequences, and a sentence.

The Lausanne protocol is a published evaluation proposal
for the XM2VTS database and two protocol configurations
were defined.

• Configuration I: The assumption is good expert training
using data from three different sessions, and inferior
fusion training using data from the same shots that were
used for expert training

• Configuration II: The assumption is inferior expert train-
ing using data from only two different sessions, and
good fusion training using data from shots that were
not used for expert training

Each shot being used consists of the 2 audio digit se-
quences and of one image. The 295 subjects were divided
into three sets: 200 clients, 25 impostors for evaluation, and
70 impostors for independent testing. The impostors in the
evaluation set allow to train a supervisor with impostors that
were never seen by the experts. The evaluation set serves for
the evaluation of experts, the determination of the verification
threshold, and for the training of the supervisor.
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This leads to the following statistics:

• Client training examples: 3 per client in Configuration
I, 4 per client in Configuration II.

• Evaluation samples (clients): 600 in Configuration I,
400 in Configuration II.

• Evaluation samples (impostors): 40000 (25 × 4 × 2 ×
200).

• Test client accesses: 400 (200× 2).

• Test impostor accesses: 112000 (70 × 4 × 2 × 200).

3. EXTRACTION OF LIP FEATURES AND
MATCHING STRATEGY

The lip tracker described was used to extract lip features from
the two audio digit sequences available in each shot. In the
current text dependent lip-based verification that will be de-
scribed below, the two audio sequences are concatenated, re-
sulting in a single, bigger sequence. The lip tracking initiali-
sation was based on a colour clustering procedure.

As far as tracking performance itself is concerned, its im-
portance is very much acknowledged, but lacking an objective
and meaningful quality metric, such an analysis will be omit-
ted and, as previously pointed out by Jourlin et al [7], it is the
combined performance of tracking and verification that will
be evaluated through the verification experiments that will be
described in the coming sections. Nonetheless, the subjec-
tive impression is quite good for most of the speakers, which
is quite remarkable in view of the broad ethnical background
coverage of the XM2VTS, and the fact of having to cope oc-
casionally with significant motion. The results also show the
good generalisation capability of the eigenlips estimated from
another database. Problems have, however, been detectd a)
with some speakers wearing dark beards and/or moustaches,
b) with speakers where lip colour is hardly distinguishable
from the surrounding skin, specially if relatively reddish ar-
eas occur in the surrounding skin area, and c) unusual degree
of motion. The presence of surrounding skin together with
moustaches/beards already violates the working assumption
of estimating the lip contour as the boundary between two ho-
mogeneous regions, with the added difficulty in these cases
that the estimation of a unimodal colour model of the area
surrounding the lips (by merging quite different chromaticiy
clusters results into a single one) results in a model which
happens to be closer to the lips model than any of the consti-
tuting clusters. In case a), although tracking remained stable
it failed to accurately follow the lip contour outline. Case b)
was less severe, and tracking failure was restricted more often
to temporary distractions, typically involving the lower con-
tour of the lips. As far as case c) is concerned, even significant
degrees of motion were generally well tolerated, although in
a few cases allowing for a temporary, partial loss of tracking

(for instance affecting a corner of the mouth), prior to recov-
ery.

The lip tracker supplies a set of eigenlip coefficients and
affine transform parameters for each frame. By warping the
linear combination of eigenlips with the affine transform pa-
rameters, a 22-dimensional feature vector is obtained that con-
sists of the geometrical coordinates of the 11 control points
used for characterising the lip contour. Accordingly, an ut-
terance consisting of N frames is represented by a sequence
of control point vectors u1, . . . ,uN which define a trajectory
in a 22-dimensional space. Verification tests are operated by
matching the trajectory under test T = {u1, . . . ,uN} against
a reference template R = {v1, . . . ,vM} corresponding to the
claimed identity using a Dynamic Time Warping Algorithm
(DTW) [8].

A framewise dissimilarity metric is given by

d(ui,vj) = (ui − vj)T H(ui − vj) (1)

where H is the metric matrix converts control point distances
into real shape distances.

Unless additional information becomes available, it is gen-
erally not possible to establish whether affine variation just
corresponds to pose variations (e.g. different lips size due to
posing at a different distance from the camera) or they are
really characteristic of a given identity. Furthermore, even
small, perceptually irrelevant changes in scale can have a stron-
ger impact on the metric considered than proper shape varia-
tion. This is why eventually all control point vectors are nor-
malised for translation, scale and rotation. Hence the control
point constellation for each frame is translated to the origin
of coordinates and the point set is rotated so that the points
corresponding to the mouth corners on the B-spline contour
are aligned with the x axis. Finally, to account for scale nor-
malisation, whilst allowing for relative size changes in the
sequence of frames corresponding to a single utterance, the
mouth width mode w0 = modN

i=1wi is computed in a first
pass and then the control point constellation of each frame is
homogeneously (both horizontally and vertically) scaled by
a factor wref

w0
in a second pass, where wref is a predefined

width value. As a result of this process, the mouth shapes of
every single utterance will have their most common width set
to this reference value.

The distribution of matching scores for client and imposter
claims obtained on the evaluation set of the XM2VTS database
are shown in Figure 1. The error rates for Protocol Configu-
ration I are presented in Table 1.

4. FUSION EXPERIMENTS ON THE XM2VTS
DATABASE ACCORDING TO THE LAUSANNE

PROTOCOL

The combination of a number of experts can potentially im-
prove -and sometimes significantly- the performance attained
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Fig. 1. Distance probability density functions for client and
imposter claims.

by the best individual modality. This was the theme of the
M2VTS project [11], and more recently, also in the context of
the XM2VTS database and the Lausanne protocol, succesful
integration result were reported in [12].

The fundamentals underpinning fusion is that by drawing
on several independent sources of information, an adequate
combination of them can overcome the shortcomings and lim-
itations of each of the individual modalities. The converse is
also possible (performance degradation) and from that it fol-
lows the importance of developing appropriate information
integration strategies.

Typical fusion strategies consist of simple combination
rules: maximum, minimum, median, average score, and prod-
uct of scores. Conditions under which such schemes perform
well are theoretically understood and have been shown to hold
in applications [13]. However, in a very similar fusion sce-
nario [12] (in fact some of the experts combined are also used
here) combining high performance speech verification mod-
ules and a medium vision module (face recognition), the con-
ditions were violated and none of the aforementioned fusion
schemes performed better than the best individual expert.

In the light of those considerations, and the succesful per-
formance obtained with a linear weighted combination rule
[7], this was eventually the fusion strategy adopted for these
experiments. According to this integration paradigm, a ver-
ification score v is obtained as a linear combination of the
scores of the m modalities to fuse (v = w1v1 + . . . + wmvm)
and then compared with a threshold τ0. The optimal weights
w1 . . . wm and the acceptance threshold τ0 are chosen using

Algorithm threshold FRR FAR

SURREYL (lips) 0.50 14.00 % 12.67 %
SURREY1 (face) 0.50 7.25 % 7.78 %
SURREY2 (face) 0.21 5.00 % 4.45 %
IDIAP2 (voice) 0.50 7.00 % 1.42 %
IDIAP3 (voice) 0.50 0.00 % 1.48 %
AUT1 (face) 0.50 6.00 % 8.12 %

Table 1. Performance of modalities on test set (Configuration
I).

the evaluation set.

Apart from the described DTW-based text dependent ver-
ification system based on lip features (SURREYL), 3 face
recognition algorithms (SURREY1: based on robust correla-
tion [15], SURREY2: Linear Discriminant Analysis [14] and
AUT1 developed at the Aristotle Technical University), and 2
voice-based modalities [12] (IDIAP2 -sphericity and IDIAP3
-HMMs) were considered for the fusion experiments. Their
individual performances (Configuration I) on the test set are
shown in Table 1.

The following fusion experiments were considered:

1. Lips and face (SURREY2)
2. Lips and voice (IDIAP3)
3. Face (SURREY2) and voice (IDIAP3)
4. Lips, face (SURREY2) and voice (IDIAP3)
5. SURREY1, SURREY2, IDIAP2, IDIAP3 and AUT1
6. All: SURREYL, SURREY1, SURREY2, IDIAP2, IDIAP3
and AUT1

The results, as well as the corresponding optimal combi-
nation weights and acceptance threshold can be seen in Ta-
ble 2. It is interesting to see how in all cases the trained linear
weighted classifier performs better than the best individual
expert. It is also worth remarking how the 4th fusion strategy
(lips, face and voice) does perform slightly worse than the 3rd
one (face and voice), which can be put down to overtraining
since the former did yield a lower FAR figure during evalu-
ation. Eventually the best results among the 6 test scenarios
considered are obtained when all 6 modalities are combined,
although it can be seen how the weights attributed to some of
them are quite low, or even zero. In order to see to what extent
lip features do represent a positive contribution to the overall
performance, the results for a trained classifier combining the
other 5 modalities, leaving aside the lips, are shown as well.
Getting further improvements at low error rates is very diffi-
cult and lips reduce the error rate of the 5 modality case by
roughly 40%.
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Modalities weights threshold FRR FAR

lips and face 0.42, 0.58 0.38 4.50 % 0.73 %
lips and voice 0.41, 0.59 0.54 0.00 % 1.39 %
face and voice 0.58, 0.42 0.42 0.00 % 1.25 %
lips, face 0.27, 0.23 0.51 0.00 % 1.31 %
and voice 0.49
5 modalities 0.00, 0.02 0.50 0.00 % 0.52 %
(no lips) 0.87, 0.05

0.06
all 6 modalities 0.03, 0.00 0.50 0.00 % 0.29

0.01, 0.89
0.03, 0.04

Table 2. Fusion results (Configuration I).

5. CONCLUSIONS

A text-dependentDTW-based person identity verification sys-
tem using lip features during speech production has been pre-
sented. The system builds upon the tracking results generated
by a shape-constrained chromaticity-based lip tracker which
was run for the more than two thousand audio sequences of
the XM2VTS database.

The verification performance of this lip-based modality
was tested according to the Lausanne protocol, with error
rates of about 14% on average in both configurations. More
importantly, it has been demonstrated, how a ‘weak’ verifica-
tion modality brings in additional discriminatory information
that can result in improved overall performance when com-
bined with other verification experts. Experiments carried out
with a trained weighted linear classifier combining different
verification modalities (face, voice, lips) showed, in all cases
considered, better verification performance than the best indi-
vidual modality being combined.
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XM2VTS: The extended M2VTS database. In Second
International Conference on Audio and Video-Based Bio-
metric Person Authentication, 1999.
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