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ABSTRACT

We study the topology of sensor networks. With parallel architec-

tures, the design is trivial—sensors forward their local decisions to

a global fusion center. With web architectures, sensors communi-

cate only with ‘neighbors’ and evolve their local decisions to reach

a ‘consensus.’ In practice, it is important to reach a consensus

with minimal communications and processing cost. The conver-

gence rate of the consensus algorithm depends on 1) the weights

assigned to the network links; and 2) the connectivity pattern of

the network. We apply concepts from small world networks to

design the topology and the weights when the local decisions are

quantized and study the impact on network performance when we

trade number of links for number of bits per decision.

1. INTRODUCTION

Network topology impacts the performance of distributed decision

making in sensor networks. Parallel networks are vulnerable to

central node failures and require the sensor nodes to route their in-

formation through the complex network. We consider distributed

detection in web architectures where sensors communicate only

with neighboring sensors. We use an iterative averaging algorithm,

recently proposed for estimation [1],[2]. In [3, 4], we studied the

design of the weights associated with the network links and the

design of the connectivity graph when messages are exchanged

among sensors perfectly, with arbitrary precision. Here, we focus

on: 1) the effect of quantizing the local decisions on the perfor-

mance of the distributed detector; 2) the design of the connectivity

graph with quantized decisions; and 3) tradeoffs between network

parameters (number of links and numbers of bits/ decision).

We show that the distributed detector converges evenwith quan-

tized messages but the steady state performance may not approach

that of the optimal parallel architecture. For fixed network com-

munication cost per iteration, i.e., for fixed Mb where M is the

number of links and b is the number of bits/ link/ iteration, our re-

sults show that: 1) the detection algorithm coverges faster when we

increaseM , while the steady state performance improves when we

increase b; 2) the sensor network topology affects both the conver-

gence speed of the iterative algorithm and the steady state perfor-

mance (probability of decision errors); finally, 3) the convergence

speed and steady state error probability are significantly improved

when the networks exhibit a small-world behavior.

We consider a binary hypothesis test H0 (target absent) ver-

sus H1 (target present): N sensors collect measurements y =
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(y1, . . . yN ) that are assumed to be independent and identically

distributed (i.i.d.) conditioned on the true state H with known

conditional density fi(y) = f(y|Hi), i = 0, 1.

The sensors cooperate over a communication network repre-

sented by a graph G = (V, E) where the set of N vertices V =

{s1, . . . , sN} corresponds to the sensor nodes and E = {lm =

(im, jm), m = 1, . . . ,M} is the set ofM edges, where (i, j) ∈ E

whenever sensor si can communicate with sj . We consider con-

nected graphs for which there exist a path (possibly multi-hop)

from every sensor si to every other sensor sj , i, j = 1, . . . , N .

The goal of the distributed decision algorithm is to reach a

global consensus (common decision Ĥ) about the true state H,

by exchanging local information over the network G: the sen-

sor nodes can only route their data to their immediate neighbors,

i.e., to nodes they connect to through an edge in the connectiv-

ity graph G. We consider a Bayes minimum probability of error

network detector whose performance is measured by the average

probability of decision error Pe = Pr(Ĥ �= H) = π0Pe0 +

π1Pe1, where Pe0 = Pr(Ĥ = H1|H0), Pe1 = Pr(Ĥ = H0|H1),

and π0, π1 are the prior probabilities of H0 andH1, respectively.

Section 2 presents the distributed detector when the network

topology is fixed and the sensor local messages are unquantized.

Section 3 reviews generators for small-world graphs. Section 4

considers that the messages are quantized by b bits to conserve

communication and bandwidth resources. Section 5 addresses the

impact of quantization on the performance of the detector and stud-

ies the tradeoffs between the number of communication links M

and the number of quantization bits b per message when the total

number of communication bits bM is fixed. It also investigates

the implications that the message quantization has on the design

of the connectivity graph of the sensor network. Finally, Section 6

concludes the paper.

2. DISTRIBUTED DETECTION

We present a distributed decision algorithm, which preforms global

fusion by means of local exchange of information between neigh-

boring sensors. In this section we assume that the connectivity

graph over which the sensors communicate is known and fixed. We

also assume that the sensors exchange rawmessages without quan-

tization. In the proposed distributed decision algorithm, the sen-

sors communicate only with their immediate neighborhood, i.e.,

the nodes to which they are connected to by an edge in the connec-

tivity graph G. The statistics stored at the sensors are updated in

an iterative manner to reach a consensus about the global statistic.

1. Initially, sensors take measurements y1, . . . yN , after which

each sensor sn, n = 1, . . . , N , computes the log likelihood

ratio rn = log
Pr(y

n
|H

1
)

Pr(y
n
|H

0
)
of its measurement yn. These
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LLR values serve as the initial states of the consensus de-

cision algorithm. We denote the value stored at sensor sn

at iteration t by xn(t), and we refer to it as the state of the

sensor sn at time t. At t = 0, the initial states are given by

xn(t = 0) = rn, n = 1, . . . , N .

2. The consensus decision algorithm is then carried out ac-

cording to the following linear operation [1]

xn(t) = Wnnxn(t− 1) +

N∑
i∈Ω

n

Wnixi(t− 1), (1)

where Ωn is the set of neighbors of sensor sn and Wij is

a weight associated with edge (i, j) (if it exists). The con-

sensus decision procedure is expressed in matrix format as

x(t) = Wx(t− 1), (2)

where x(t) is the N × 1 vector of all current states and

W = {Wij} is the matrix of all weights. Entry (i, j) inW

is zero if (i, j) /∈ E . In terms of the initial state, the con-

sensus updating rule is x(t) = W
t

x(0),where x(0) is the

N × 1 vector of all the initial states xn(0) = rn, n =

1, . . . , N . The iterative procedure is carried out until ∀n

limt→∞ xn(t) = R/N, i.e., the stateNxn(t) of each sen-

sor converges to the global log likelihood ratioR =

N∑
n=1

rn.

3. The final decision is then obtained locally at each sensor

according to its current state

xn(t)

̂

H(n)=1

≷

̂

H(n)=0

υ/N,

where Ĥ(n) denotes the decision of sensor sn, and υ =

log(π0/π1) is the fusion threshold.

Design of the LinkWeights For a fixed graph topologyG, the link

weights Wij are designed to ensure convergence of the consensus

decision algorithm. Convergence is guaranteed, e.g., [1], when-

ever: 1) the sum of each row or column of W is one; and 2) the

spectral radius ρ(W −
1

N
1N×N ) is less than one. In this paper,

we restrict the weights to be symmetric, i.e., Wij = Wji. Un-

der this restriction, the convergence speed is maximized by min-

imizing the spectral norm

∥∥
W−

1

N
1N×N

∥∥
2

. We use a primal

barrier interior-point method to solve this semidefinite program-

ming problem. Details of the weight optimization algorithm can

be found in [1] and [3].

Performance Analysis—Unquantized Gaussian Observations

Consider a simple Gaussian shift-in-mean model where the obser-

vation at sensor sn under Hi is characterized by yn = µi + z,

z ∼ N (0, σ
2

) where µi is the signal mean underHi, i = 0, 1 and

z is a zero-mean Gaussian noise with variance σ
2

. Without loss

of generality, we let µ1 = −µ0 = µ. In the consensus decision

algorithm (2), decisions are made at all sensor nodes based on a

weighted sum of the measured LLRs rn, n = 1, . . . , N . It can

be shown that, at iteration t, the probabilities of error at sensor sn

underHi are given by

P
n

ei
= Q

(
−

υ − 2µµiN/σ
2

2µiN

√
[W

2t
]nn/σ

)
, (3)

where [W
2t

]nn denotes the nth diagonal element of W
2t

and

Q(x) =

∫∞

x

1
√
2π

e
−y

2

/2

dy is the normal right-tail distribution.

As t → ∞, [W
2t

]nn converges to 1/N and (3) approaches the

performance of an optimal parallel fusion network where all sen-

sors deliver their measurements to a single fusion center.

The probabilities of error in (3) followed easily because the

sensor measurements are normally distributed and they are for-

warded without quantization. When the measurement statistics

are non-Gaussian or if they are discrete (e.g., quantized), the er-

ror performance is much more involved. In [5], we presented a

methodology based on large deviations, more specifically on the

saddlepoint approximation, that computes efficiently very accu-

rate approximations to the error probabilities for parallel architec-

tures. This method can also be extended to approximate the error

probabilities of the distributed detection algorithm presented here

with arbitrary network architectures and under arbitrary observa-

tion models (e.g., non-Gaussian, discrete, or quantized observa-

tions). We will not pursue this further here due to lack of space.

3. SMALL-WORLD GRAPH GENERATORS

In general, designing the network architecture that maximizes the

performance of distributed detection is a very complex problem.

Exhaustive search over all possible graph topologies is impracti-

cal; randomized search strategies are more useful, but a totally

random search will take too long to find good connectivity graphs.

Instead, we use a model that generates graphs with certain small-

world properties similar to what has been found in many social,

biological, and technological networks. These networks exhibit

small average path length and strong local clustering, [6]. We

use the generator in this reference that can produce graphs ranging

from highly structured to completely random. The graph genera-

tion is started by constructing a highly structured circular network

in which nodes are placed on a circle and each node is connected

to its 2kw closest nodes. Then, a random rewiring procedure is

conducted on all graph links. With probability aw, each link is

rewired to a different destination chosen uniformly at random. Self

and parallel links are prevented in the rewiring procedure, while

the number of links is kept constant regardless of aw. Setting aw

close to zero results in generating highly structured graphs similar

to the original circular network, which suffer from high average

path length between node pairs. On the other hand, aw = 1 results

in a totally random network with low average path length but with

weak clustering. Refernce [6] observes that, as aw changes from 0

to 1, a phase-change occurs at which the generated networks start

exhibiting a small-world behavior characterized by high clustering

coefficient and small average path length.

4. QUANTIZATION EFFECTS

So far, it was assumed that the sensors exchange their state val-

ues xn(t) with high precision. In practice, however, these values

are quantized into finite levels (i.e., finite number of bits) in or-

der to conserve power and bandwidth resources. In this section,

we examine the effects resulting from quantizing the values ex-

changed among sensors. In (1), it is assumed that the state values

xi(t−1), i ∈ Ωn of neighboring sensors are received at sensor sn

perfectly without any quantization. When these values are quan-

tized the consensus decision algorithm is carried out according to

the following update rule

xn(t) = Wnnxn(t− 1) +

N∑
i∈Ω

n

WniΨ[xi(t− 1)] , (4)

where Ψ denotes quantization. Note that sensor sn can use its

own stored value xn(t − 1) without quantization (i.e., with high

precision).

V  1062



Fig. 1: A small-world network of N = 51 nodes, M = 2N

links generated using the Watts-Strogatz model with a rewiring

probability aw = 0.3.

The quantizer Ψ introduces quantization noise at every iter-

ation of (4). It may appear at first that the accumulation of the

quantization noise at every iteration would result in the failure of

the distributed detection algorithm at some point, i.e., the diver-

gence of the detection error after the accumulative effects of the

quantization errors becomes large. This could happen, e.g., if the

quantization noise is modeled as an additive noise with identical

statistics at every iteration of the detection algorithm. In [7], the

effect of additive noise and its implications on the link-weights

design problem are discussed. It was also emphasized that the it-

erative algorithm may not converge in any meaningful sense under

such additive noise scenario. Interestingly, the quantization con-

sidered here does not fall under the model of [7] in the sense that

the quantization errors at every iteration may not be identically

distributed. In fact, simulation results show that the mean of the

quantization noise falls rapidly to zero while its variance decays as

the iterative algorithm progresses. This means that after a certain

number of iterations the effect of quantization becomes very small

and the probability of detection error approaches a certain value.

It should be noted however that the process of quantization may

cause a degradation in the convergence speed and/or the steady

state error probability of the distributed detection algorithm. This

will be the subject of investigation in the following section.

5. SIMULATIONS

In this section we (1) illustrate the effect of quantization on the

convergence of the distributed detection algorithm, and (2) investi-

gate the topology of networks that lead to good convergence prop-

erties. We consider a network of N = 51 sensors that communi-

cate over a graphG generated using the Watts model with number

of links given by M = kwN . Fig. 1 shows a sensor network

generated using this model when kw = 2 and the probability of

rewiring aw = 0.3. The sensor observations follow a Gaussian

shift-in-mean model where the conditional signal means are as-

sumed to be µ1 = −µ0 = 1 and the SNR= −8 dB. The values

exchanged between the sensors at every iteration are quantized us-

ing a b-bit non-uniform quantizer Ψ. The quantization thresholds

are designed with respect to the saddlepoint approximation as de-

scribed in [5] while the quantization levels are set at the means of

the quantization intervals.

Tradeoffs andQuantization Effects The performance (i.e., prob-
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Fig. 2: Convergence of the distributed detection algorithm in a

network of N = 51 sensors. Under quantization, the number of

linksM and the number of quantization bits b are chosen such that

bM is maintained constant. The unquantized cases are represented

by b = ∞.

ability of error) of the distributed detection algorithm is assessed

through Monte-Carlo simulations. Specifically, a large number

of random observation vectors (each containing N sensor obser-

vations) are generated and the iterative detection algorithm (de-

scribed in section 2 and (4)) is run for every randomly gener-

ated observation vector x(0). At every iteration, the sensor deci-

sion errors are counted and averaged over all sensors and over all

Monte-Carlo experiments to produce an estimate of the probabil-

ity of error after a particular number of iterations. Fig. 2 shows the

convergence of the average probability of two networks: NET2:

M = 2N , b = 8 quantization bits (shown in Fig. 1) , and NET4:

M = 4N , b = 4 bits (not shown here). Note that the parameters

of NET2 and NET4 are chosen so that, at every iteration, the to-

tal number of exchanged bits bM is the same for both networks.

This enables us to study the tradeoffs involved between the num-

ber of linksM and the number of quantization bits b. Fig. 2 shows

that the performance of distributed detection over both networks

is close to optimal (i.e., parallel network with unquantized mea-

surements). However there is a clear advantage of NET4 (with

higher number of links) in terms of the convergence speed while,

on the other hand, NET2 (with higher number of quantization bits)

is slightly better in terms of the steady state probability of error.

The case of unquantized measurements is also included in Fig. 2

(estimated from (3)) to emphasize the effect of quantization. It can

be seen that quantization degrades both the convergence speed and

the steady state performance.

Connectivity Graph Design An important issue in sensor net-

works is the design of the underlying connectivity network that

supports the information exchange among sensors. In [4], we

showed how the convergence speed of the distributed detection

algorithm can be greatly improved by proper design of the net-

work graph. Under quantization, however, the connectivity pattern

not only affects the convergence speed but also the steady state

performance of the iterative algorithm. Rather than considering

the problem of topology-design in general, we focus on networks

that exhibit small-world properties. We generate random networks

according to the Watts-Strogatz model where the probability of

rewiring aw is varied from to 0 (circular network) to 1 (random
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Fig. 3: The steady state probability of error to which the distrib-

uted detection algorithm converge to under different quantization

scenarios. Note that bM is kept constant.

network). For each randomly generated network we estimate the

performance (probability of error) of the distributed detection al-

gorithm fromwhich we compute the steady state performance (i.e.,

average probability of error as the number of iterations t → ∞)

and the convergence speed of the iterative algorithm (i.e., the num-

ber of iterations required to approach within 10% of the steady

state performance).

Like the previous example, we consider two scenarios M =

2N , b = 8 quantization bits, and M = 4N , b = 4 bits where the

total number of exchanged bits bM is the same for both in order

to study the tradeoff between the number of linksM and the num-

ber of quantization bits b. Fig. 3 and Fig. 4, respectively, show the

steady state probability of error and the convergence speed aver-

aged over 100 randomly generated networks at each value of the

rewiring probability aw. It can be seen that networks with higher

number of quantization bits provide a slightly better steady state

performance. On the other hand, networks with more links achieve

a considerably faster convergence while still providing near opti-

mal performance. More importantly, results illustrate how the dif-

ferent connectivity patterns impact the detection performance. It

can be seen that the performance in terms of the steady state er-

ror probability and the convergence speed, is worst when aw → 0

corresponding to a circular network characterized by a high clus-

tering coefficient and a high average path length. The performance

improves as random rewiring is introduced into the network struc-

ture with an optimum around aw = 0.85. Notice that even a low

ratio of random rewiring, e.g. 30%, can greatly improve the per-

formance over that of a regular network with nearest neighbor con-

nectivity. At such rewiring ratio, the generated networks have the

low average path length and high clustering coefficient character-

istic of small-world networks.

6. CONCLUSIONS

Results in this paper show that the proposed distributed detection

algorithm converges even when the sensor messages are quantized

for the purpose of conserving power and bandwidth resources. Re-

sults also show that the performance can be greatly improved by

introducing a small degree of randomness (small number of short-
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Fig. 4: The number of iterations needed so that the performance

of the distributed detection algorithm reaches within 10% of the

steady state performance.

cuts) with which the network attains desirable small-world charac-

teristics. There are many avenues to be explored in relation to the

current study, in particular, how to design the weights associated

with the network links, and the local quantizers. Also, through-

out this paper, we assumed equal cost for all communication links

regardless of the physical length of these links. It would be prac-

tically interesting to consider these costs in the design process.

Results based on the equal cost assumption can serve as a first-

cut study to have insight over what can be characterized as“good”

connectivity patterns.
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