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ABSTRACT

Quantization is the mapping of continuous quantities into
discrete quantities, an operation far more general and flexible
than the ubiquitous example of analog-to-digital conversion
of scalar amplitude values. By appropriate choice of distor-
tion measures and transmission constraints, quantization can
incorporate signal processing such as statistical classification,
estimation, and modeling. We here survey several approaches
to incorporating such tasks into the quantization and possible
extensions to distributed signal processing.

1. INTRODUCTION

Quantization is widely thought of as A/D conversion and its
traditional role in sensing and signal processing has been to
convert raw analog scalar measurements into a digital approx-
imation. If the quantized signal is to be used for signal pro-
cessing with the goal of making decisions, producing esti-
mates, or constructing models of the original observed behav-
ior, the performance of the signal processing can depend crit-
ically on the quality of the quantized reproduction of the orig-
inal signal. Very high bitrates may be needed to provide suffi-
ciently good signal approximations for the subsequent signal
processing to perform well. Rigorous analysis of such sys-
tems is complicated by the fact that optimizing a quantizer
with respect to mean squared error (MSE) does not easily re-
late to the resulting performance measures such as average
Bayes risk in subsequent signal processing. Signal process-
ing is often designed assuming it is operating on the original
signal, when in fact it is operating on a quantized approxi-
mation. These issues assume added importance when many
distributed quantizers are involved in a distributed sensor net-
work. Not only can the approximation errors accumulate, the
quantization itself can become inefficient in terms of required
bit rates and energy budgets if the individual quantizers are
designed without consideration of the overall goals of the sys-
tem.

A variety of techniques have been developed in the in-
formation theory and statistical signal processing literature to
handle task-driven quantization and distributed quantization,
but both fields remain relatively underdeveloped in compar-
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ison with traditional models and little has been done to con-
sider the two aspects together. Existing analyses often assume
models which are doubtful fits to some fundamental aspects
of real systems.

We survey and discuss several extensions and variations
of traditional quantization relevant to task-driven quantization
and existing and possible extensions to distributed signal pro-
cessing.

2. QUANTIZATION FUNDAMENTALS

A quantizer consists of an encoder α which maps an input
space A into in index set I and a decoder β which maps each
the index set I into an output or reproduction space Â. Typ-
ically A consists of the real line (scalar quantization) or k-
dimensional Euclidean space (vector quantization), but more
generally it can be any well-behaved function space. The de-
coder is equivalent to the range space β(α(A)) = C, the re-
production codebook, and the encoder is equivalent to a parti-
tion S = {Si}, Si = {x : α(x) = i} of the input space A. To
quantify the performance of a codebook requires (at least) two
cost functions: a distortion measure d(x, y) ≥ 0, which quan-
tifies the cost of reproducing an input x as y, and an instanta-
neous rate r(i) ≥ 0, which assigns a transmission or memory
cost to every index i. By far the most common distortion
measure is simple MSE. The instantaneous rate measure can
be thought of as the number of bits or nats required to store
or losslessly communicate the index. The usual cases are the
fixed-rate case where r(i) = ln |C| nats, the log of the number
of reproduction codewords, and the variable-rate case, where
r(i) = �(i), where � is a length function satisfying the Kraft
inequality

∑
i e−�(i) ≤ 1. In general, one might consider a

Lagrangian combination r(i) = (1 − η)�(i) + η ln |C| in or-
der to assign costs both to the bits for transmission and the
memory required to hold the codebook.

If X is a random object (variable, vector, process, or field)
described by a probability distribution PX , then the average
distortion is the corresponding expectation E[d(X, β(α(X)))]
and the average rate is the expectation E[r(α(X))]. Ideally
one would like both of these quantities to be small, but the
point of the theory and practice is to find the best tradeoff be-
tween the two. For both theory and design, it is useful to com-
bine the cost measures into a single Lagrangian distortion and
consider unconstrained minima. Toward this end we focus on
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the basic optimization problem as being the minimization of
the average of the Lagrangian distortion E[d(X, β(α(X)))]+
λE[r(α(X))] over all quantizers, possibly with added struc-
tural constraints, There are three major theoretical approaches
to this optimization for random vectors. One is Shannon’s
rate-distortion theory, which provides lower bounds that are
achievable in the asymptopia of large dimension and delay
when the random vectors are drawn from a random process
with suitable stationarity properties. A second approach is
the theory of high rate quantization, which quantifies the opti-
mal tradeoffs between rate and distortion in the asymptopia of
large rate and small distortion (but fixed dimension). Lastly,
there are nonasymptotic results which provide necessary con-
ditions for quantizers to be optimal for general random ob-
jects. These have their origins in Lloyd’s original optimality
conditions for PCM and are easily summarized as optimality
conditions for each component in terms of the other compo-
nents:
Optimal Encoder α(x) = argmini (d(x, β(i)) + λr(i)).
Optimal Decoder β(i) = argminy E(d(X, y|α(X) = i).
Optimal Length Function �(i) = − ln Pr(α(X) = i).
Given a reproduction codebook C (decoder) or partition (en-
coder), the Lloyd properties determine the remaining compo-
nents so optimizing over quantizers is equivalent to optimiz-
ing over reproduction codebooks or partitions. Hence we can
add one more condition for pruning codebooks.
Codebook Pruning For a given reproduction codebook C a
necessary condition for optimality is that there be no sub-
codebook C′ ⊂ C for which C′ has strictly smaller average
Lagrangian distortion than does C, e.g., it must be true that
Pr(α(X) = i) �= 0 for i ∈ α(A).

Iterative application of these properties yields a Lloyd clus-
tering algorithm for quantizer design.

3. QUANTIZATION FOR ESTIMATION

Suppose that the task is not to reproduce the observed ran-
dom object X at the receiver, but instead to reproduce an un-
observed random object Y which is correlated with X . The
goal is now to encode the observed X into an index i, and then
for the decoder to decode i as an estimate Ŷ . This is consid-
ered estimation or regression if Y is continuous and statistical
classification or detection if Y is discrete. The average dis-
tortion for the system now takes the form E[d(Y, β(α(X)))],
which might be a Bayes risk in general or MSE for estimation
or probability of error for classification. One can think of this
system as having an input Y , a sensor described by a con-
ditional probability distribution PX|Y , and an encoder which
acts upon the observed X .

In the estimation case this problem is known as remote
source coding or coding a noisy source and has a long history
(see, e.g., [4]). If one uses MSE as the distortion measure,
then the optimal estimator for Y given the true value of X is
well known to be the conditional expectation E[Y |X], which

Y �

SENSOR

PX|Y �X

ENCODER

α �i

DECODER

κ �

β �
Ŷ = κ(i)

X̂ = β(i)

suggests a natural approximation — use the quantizer to en-
code X so that X̂ = β(i) is designed to well approximate X ,
then form the estimator by inserting X̂ in place of X in the
conditional expectation, that is, Ŷ = E[Y |X̂]. The technique
is simple and intuitively it should work well if the approxima-
tion of X by X̂ is good, e.g., if the quantizer has very high
rate, but few careful theorems exist to justify the approxima-
tion and clearly it has problems outside the high rate regime.

The problem can be recast as a quantization problem with
input X by modifying the distortion measure to measure the
distortion between a source sample value x and the encoder
output index i by d(x, i) = E[C(Y, β(i))|X = x], where C
is a Bayes risk cost function. The Lloyd algorithm immedi-
ately extends to this variation. The encoder picks the index to
minimize the modified distortion and the decoder κ uses the
centroid with respect to the modified distortion — the optimal
nonlinear estimate of Y given the observed index [16]. In [4]
it is shown that under certain conditions the optimum strategy
is to first form an optimal nonlinear estimate of the unknown
Y based on the observed X , and then optimally quantize the
estimate using the usual MSE distortion. As a variation on
this theme, one can have a decoder that produces both a re-
production of X and an estimate of Y from the received index
and combine the two resulting distortions using an additional
Lagrangian multiplier which allows one to weight the relative
importance of the estimation task and the accuracy of the ob-
served signal reproduction. Once again Lloyd has a natural
extension and each decoder can be optimized for the remain-
ing components.

This particular case makes two points that are common
to many task-driven quantization systems: First, one needs to
know the underlying distributions in order to apply the theory,
in particular the conditional distribution PY |X is required, and
hence it must be estimated based on training data. Second,
the quantizer is made task-specific by choosing a distortion
measure that reflects the overall goal.

4. QUANTIZATION FOR CLASSIFICATION

Detection or classification based on quantized data also has
a long history. Early techniques attempted to optimize indi-
rectly by causing the quantizer to maximize an Aly-Silvey
distance between the conditional distributions of the quan-
tized data under the different hypotheses [14, 10, 13, 2]. The
classifier performance can be directly incorporated as in the
estimation task using a Bayes risk, either alone or in a La-
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grangian combination with MSE on the observed signal [12].
As in the estimation case, this yields modified Lloyd condi-
tions:
Optimal Classifier Bayes optimal classifier given index

argmink{
∑

j Cj,kP (Y = j|α(X) = i)}.
Optimal Encoder

argmini{d(x, β(i))+λ
∑M

j=1 Cj,κ(i)P (Y = j|X = x)}.

5. QUANTIZATION FOR MODELING

In some applications the task is to construct a statistical model
for the observed data, which might be used for synthesis or to
choose an algorithm for further processing. One can think of
quantizing observed random vectors into a codebook of mod-
els. One such approach is based on high rate quantization
theory, a quantitative measure of the mismatch resulting from
applying MSE quantization designed for one random vector
to another, and the worst case property of Gaussian models for
quantization. The development [9, 1] boils down to generat-
ing a reproduction codebook of Gaussian models, each con-
sisting of a covariance matrix Ki, mean vector µi, and prior
probability wi. Taken together the collection is equivalent to
a Gauss mixture model. The resulting distortion between an
observed vector x and the encoder output index i is d(x, i) =
− lnwi + 1

2 ln
(
(2π)k|Ki|

)
+ 1

2 (x−µm)tK−1
i (x−µm). The

distortion is a minimum discrimination information distortion
and has its origins in the Itakura-Saito distortion of speech
processing. The key points are that the distortion measure is a
weighted quadratic distortion measure and hence has well de-
fined Lloyd centroids and a computable minimum distortion
encoder [9, 1] and there is no need to explicitly estimate class
conditional probabilities. The Lloyd algorithm can be applied
to design the quantizer which directly provides a Gauss mix-
ture model for the observed data which can in turn be used
to perform classification or as a component in a subsequent
classification algorithm.

6. DISTRIBUTED PROCESSING

Consider a sensor network consisting of many nodes, each of
which makes measurements on its environment and is capable
of some signal processing and communication. We assume
that all nodes make analog measurements, but have commu-
nication constraints on what they can transmit and hence must
quantize. The nodes might or might not be able to receive
information from neighboring nodes and incorporate it into
their own signal processing. We also assume that there are
central processing units which can receive information from
many nodes and are permitted sophisticated signal processing
in order to perform some overall task. Much of the literature
ignores the quantization component and evaluates distributed
estimation and classification assuming perfect measurements.
As in the single user case, this provides an approximate ap-
proach by simply replacing a measurement by its quantized

approximation, but it compounds the problems with such ap-
proximations.

Quantization enters into the system in several ways. The
most obvious way is the quantization on the measurements at
each node prior to the transmission of information to a cen-
tral facility. Quantization also enters in the selection of node
locations, that is, two or three dimensional space is quantized
into a finite number of points corresponding to the location of
the nodes. Much of the theory for sensor networks involves
assumptions that the number of nodes is large, their locations
dense, and there is a point density function describing the dis-
tribution, the same idea as the quantizer point density function
of Lloyd and Gersho [7] for amplitude quantization. Intu-
itively, one might suspect that there should be a fundamental
tradeoff between these two types of quantization. For exam-
ple, if the rate of the spatial quantization is small and hence
there are few nodes, then a higher rate will be required for
the amplitude quantization at each node for a given level of
performance at the central facility. Conversely, if the spatial
quantization rate is high and the nodes are dense, then one
would think that the individual nodes could have very low am-
plitude quantization rates and still provide good performance.
An old (1985) and simple result along these lines showed that
if a common random variable was viewed plus conditionally
independent noise at each node, then binary quantizers suf-
fice to achieve arbitrarily small estimation error at a central
facility [8]. This result involved a simple application of the
ergodic theorem, but it makes the point that many nodes with
low rate simple scalar quantization can combine to produce a
good estimator of a common underlying random variable.

In the naive design case, each node might behave as if
it alone was sending information to the central facility and
the discussion thus far describes how that quantization might
be performed in a task-specific way to make best use of the
node signal processing and the communication constraints.
That approach, however, is clearly inefficient since it takes
no advantage of the correlation of inputs and observations at
the many nodes. A variety of approaches have evolved un-
der the general headings of multiterminal information theory
and distributed compression to treat such systems. In gen-
eral the nodes might interract with each other, which leads to
complicated formulations which to date have resulted in the
solution of only a few very simple systems, including the clas-
sic Slepian-Wolf and Wyner-Ziv codes. Of particular interest
in sensor networks with complexity and communication con-
straints is the case where the sensors do not receive informa-
tion from other sensors or do their coding incorporating side
information, but they are allowed to design their codes with
knowledge of the statistical behavior of the other sensors in
communication with a central facility — called “cooperative
design, separate encoding” [11]. Extending the model of [8]
one can assume a common random object Y and a collection
of observations Xm corresponding to the measurements at
separate sensors and described by conditional probability dis-
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tributions PXm|Y . A variety of Shannon coding theorems and
specific coding schemes have been developed for such sys-
tems under the assumption of conditional independence of the
Xm given Y [6, 11, 17, 3, 15]. Such systems are sometimes
referred to as the CEO problem [3] or multiple access coding
[5]. The assumption of conditionally independent noise is du-
bious if the nodes are assumed dense unless one assumes the
noise is entirely circuit noise in the nodes themselves. Tradi-
tional Shannon theoretic results have the drawback of assum-
ing that sequences of measurements can be grouped as large
dimensional vectors for compression, adding to complexity
and delay. Specific modest complexity coding schemes have
been considered, e.g., in [6, 11, 15, 5]. In [15] attention was
also paid to channel coding to allow for the well known fail-
ure of the source/channel coding separation in networks. As
a simple example of cooperation, both the index reuse tech-
niques of [6, 11] and the syndrome codes of [15] make use
of the fact that if one has separate MSE quantizers at, say,
two nodes, then one can merge quantizer cells at both nodes
to produce lower rate quantizers at each node and then dis-
ambiguate the pairs of merged cells at the decoder by picking
the most likely pair of high rate input cells given the received
pair of indexes. Lloyd-algorithms might be able to find good
structured and simple codes of this variety.

All of these approaches attempt to recover the common
underlying random object seen by the many sensors. If the
problem is really one of classification, however, task-driven
quantization can produce lower rate bitstreams at individual
nodes and hence ameliorate the problem of efficiency lost by
lack of cooperation. This lower bit rate also means that sim-
ple channel coding or robust quantizers can more easily pro-
vide reliable communication. A central processing facility
can then pool the outcomes using well established statistical
techniques for an overall decision. For this reason single-user
task-specific quantization may play a useful role in distributed
sensor node applications where statistical classification is the
overall goal.
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