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ABSTRACT 

Many techniques for speaker or channel adaptation have 

been successfully applied to automatic speech recognition. 

Most of these techniques have been proposed for the 

adaptation of Hidden Markov Models (HMMs). Far less 

proposals have been made for the adaptation of the 

Artificial Neural Networks (ANNs) used in the hybrid 

HMM-ANN approach.

This paper presents an adaptation technique for ANNs that, 

similar to the framework of MAP estimation, tries to 

exploit in the adaptation process prior information that is 

particularly useful to deal with the problem of sparse 

training data.  

We show that the integration of a priori information can be 

simply achieved by linear interpolation of the weights of an 

"a priori" network and of a speaker specific network. 

Good improvements with respect to the baseline results are 

reported evaluating this technique on the Wall Street 

Journal WSJ0 and WSJ1 databases and on TIMIT corpus 

using different amounts of adaptation data.   

1. INTRODUCTION 

The recognition accuracy of speaker-independent 

recognition systems heavily depends on speaker variability. 

Significant performance degradations are experienced with 

outlier or non-native speakers. Environment, channel, and 

microphone variability is another important source of 

errors.

Several techniques have been proposed to deal with these 

variations in the framework of Gaussian Mixture HMMs. 

The Speaker Independent (SI) model parameters are 

adapted using a limited amount of new data characterising 

the new speaker, environment, channel, or microphone.  

As far as speaker variability is concerned, speaker 

adaptation can be performed exploiting prior information 

included in the SI models [1], or mapping the input speech 

of new speakers to a SI system [2-4]. 

In comparison, far less proposals have been made for the 

adaptation of the Artificial Neural Networks used in the 

hybrid HMM-ANN approaches [5-7].  

In [8] the eigenvoice approach proposed in [9] has been 

originally applied to the HMM-ANN approach to reduce 

the need of adaptation data. 

The simplest and more popular approach to speaker 

adaptation with ANNs is Linear Input Transformation [5,6]. 

The input space is rotated – and shifted – by a linear 

transformation to make the target conditions more 

consistent with the speaker independent training conditions. 

The transformation is performed by a linear layer interface 

(referred to, in this paper, as linear input network or LIN) 

between the input observation vectors and the input layer of 

the SI ANN. The LIN weights are trained by minimizing 

the error at the output of the ANN system keeping fixed the 

weights of the original ANN. 

Using few training data, the performance of the combined 

architecture LIN/ANN is usually better than adapting the 

whole SI network, because it involves the estimation of a 

lower number of parameters. 

Often, however, the available data do not include enough 

samples to allow accurate adaptation of all the acoustic-

phonetic units. This is, of course, the main problem for 

every adaptation task. The problem is more severe in the 

ANN modeling framework than in the classical Gaussian 

Mixture HMMs. The reason is that an ANN estimates the 

posterior probability of each acoustic-phonetic unit state 

using discriminative training. The minimization of the 

output error is performed by means of the Back-

Propagation algorithm that penalizes the units with no 

observations by assigning to them a zero target value for 

every adaptation frame. The result is that the posterior 

probability of the unseen units is inappropriately reduced. 

Thus, while the Gaussian Mixture models with little or no 

observations remain un-adapted or share some adaptation 

transformations of their parameters with other acoustic 

similar models, the units with little or no observations in the 

ANN model loose their characterization rather than staying 

not adapted. Thus, adaptation may destroy the correct 

behaviour of the network for the unseen units. 

The LIN approach reduces these effects because a single 

linear transformation of the input parameters is performed. 

The learned transformation, however, may heavily depend 

on the phonetic content when few sentences are available 

for adaptation.  

To mitigate the problem of unseen units, this paper 

proposes an adaptation technique that, similar to MAP 

estimation in the Gaussian Mixture framework, tries to 

exploit in the adaptation process prior information that is 

particularly useful to deal with the problems of sparse 

training data. 

We show that the integration of the a priori information can 

be simply achieved by linear interpolation of the weights of 

an "a priori" network and of a speaker specific network.  

The paper is organized as follows: Section 2 gives a short 

overview of the acoustic-phonetic models of the ANN used 

by the Loquendo ASR system. Section 3 presents our 

interpolation technique that combines speaker adapted 

models and a priori information derived, for example, from 

the environment/channel information. Section 4 reports the 

experiments performed on three databases using different 

amounts of adaptation data. Finally the conclusions and 
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future developments are presented in the last Section. 

2. NEURAL NETWORK ARCHITECTURE 

The Loquendo-ASR decoder uses a 4-layer hybrid HMM-

MLP model where each phonetic unit is described in terms 

of a single or double state left-to-right HMM automaton 

with self-loops. The models are based on a set of 

vocabulary and gender independent units including 

stationary context-independent phones and diphone-

transition coarticulation models. The HMM transition 

probabilities are uniform and fixed [10].  

These models have been successfully used for the 15 

languages provided by the Loquendo ASR recognizer. 

45 stationary units and 485 transition units have been 

defined for the US-English language, for a total of 949 

output states.

3. NETWORK WEIGHTS INTERPOLATION 

To mitigate the problem of loosing characterization of the 

units with little of no observations, discussed in the 

introduction, it has been proposed [12] to include in the 

adaptation set examples of the missing classes taken from 

the training set. The disadvantage of this approach is that a 

substantial amount of the training set must be stored so that 

examples of the missing classes can be retrieved for each 

adaptation task.  

The idea developed in this work is to exploit in the 

adaptation process prior information, similar to MAP 

estimation in the Gaussian Mixture framework.  

For example, the information gathered adapting an SI ANN 

to an environment/channel can be used as a priori 

knowledge to condition the adaptation of the SI network to 

a new speaker using small amounts of her/his data.  

We illustrate our approach assuming that a SI model has to 

be adapted to a rather large set of speakers. Thus, we have 

enough data to adapt a SI network to a possibly new 

environment/channel, but a small amount of speaker 

specific data. We exploit, as a priori knowledge, the 

parameters estimated from the adaptation of the SI network 

with the data of all the speakers, i.e. the parameters of the 

environment/channel adapted network. The idea is to 

constrain the gradients of the weights of the Speaker 

Adapted network to take into account the gradients of the 

environment/channel adapted weights 

An ANN is completely defined by its topology and by the 

set of its weights (including the biases). If we use the same 

topology for the seed network and for the adapted one, we 

can describe a network by the set of its n weights. 

We will denote SIW , EAW , and SAW  the set of weights of 

a Speaker Independent, Environment/Channel Adapted, 

and Speaker Adapted networks respectively 
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Figure 1: Interpolation of the weight gradients 

The Environment/Channel adaptation will produce a new 

set of weights EAw , and a gradient EAw  with respect to 

the original weights SIw .
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Adapting the SI network to a specific speaker produces, 

instead, another set of Speaker Adapted weights and a 

gradient SAw .

),...1( niwww SI
i

SA
i

SA
i (5)

Depending on the amount of adaptation data, the speaker 

adapted model can be unreliable.  

Thus, to account for the a priori information given by the 

environment adaptation, we propose to linearly interpolate 

the gradient SAw with the gradient EAw , to get the new 

set of speaker adapted weights ADw .
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The idea is illustrated in Figure 1.

Since SIEAEA www and SISASA www , it turns out 

that interpolating the weight gradients corresponds to the 

linear interpolation of the network weights 
SA

i

EA

i

AD
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Thus, even an SI network can be used as an “a priori” 

network to limits the effects due to the scarcity of data. 

4. EXPERIMENTAL RESULTS 

The adaptation corpora of the Wall Street Journal WSJ0 

and WSJ1 databases [11] have been used for testing the 

adaptation-by-interpolation approach. 

The WSJ0 test used is the standard 5K test set, including 8 

speakers and about 40 sentences per speaker. The 

adaptation set consists of approximately 40 sentences 

pronounced by the same 8 speakers. Only the Senneheiser 

component has been used both for adaptation and for 

testing. 

The WSJ1 test used here is the spoke3, which is a similar 

test containing 10 non-native speakers with 40 adaptation 

sentences and approximately 40 test sentences per speaker.  

Since in this work we were mainly interested in testing the 

relative improvements due to the interpolation approach, 

the experimental test-bed was set as follows: 

EASA ww 1

SAw

EAw
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Figure 2: Word accuracy on WSJ0 as a function of the 

number of adaptation sentences (show in key). Interpolation 

of environment and speaker adapted LIN weights.  
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Figure 3: Word accuracy on WSJ0. Interpolation of speaker 

independent and speaker adapted LIN network weights. 

The speaker independent US-English models provided by 

the Loquendo ASR have been used for the baseline 

systems. Neither retraining nor adaptation of these 

telephone speech models (8 KHz) to the WSJ 

microphone environment or channel has been done with 

the WSJ0 training data. 

The supplied 5000 words, closed-vocabulary bigram and 

trigram models of the WSJ0 have been used as language 

models.

Due to the often limited number of sentences available 

per speaker, for each speaker, a LIN network (SA) has 

been estimated adapting the SI model with an increasing 

number of speaker sentences, while all the sentences of 

the other speakers have been used to estimate the 

Environment/Channel adapted LIN network (EA). 

Figure 2 shows the average word accuracy for the 8 

speakers of the WSJ0 corpus, using the standard trigram 

language model, as a function of the interpolation factor 

and of the number of adaptation sentences. In the figure, the 

interpolation factor =0 corresponds to performing the tests 

with the EA model, while =1 gives the average 

performance of the speaker adapted models (SA). 

The average performance of the EA models (81.3% word 

accuracy) is worse that the original SI models (85.4%) 

because they are adapted with the sentences of 7 speakers 

only and, moreover, those speakers may not have acoustic-

phonetic characteristics in common with the test speaker. 
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 Figure 4: Word accuracy on WSJ1. Interpolation of 

environment and speaker adapted LIN network weights. 
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Figure 5: Word accuracy on WSJ1. Interpolation of speaker 

independent and speaker adapted LIN network weights. 

The test confirms what was expected: the linear 

interpolation requires at least 10 sentences per speaker to 

prevail over the SI network, and the contribution of the 

interpolation is minimal because the a priori information is 

weak.

Better results, shown in Figure 4, have been obtained on the 

non-native speaker adaptation task of the WSJ1 corpus. 

With at least 5 adaptation sentences, the Speaker Adapted 

as well as the interpolated models outperform the SI model. 

The interpolation factor that gives the best performance 

increases with the amount of speaker specific data, but 

=0.7 is still a good setting.  

Since the EA models are weak because too few sentences 

and speakers contribute to the adaptation, better 

performance is obtained interpolating the SI and the speaker 

adapted model, as reported in Figures 3 and 5 for the WSJ0 

and WSJ1 respectively. 

Using an improved SI model, a baseline SI WER of 6.6% 

has been obtained on the WSJ0 test with the standard 

trigram LM, and  without cross-word specific acoustic 

models. The model was trained with the WSJ0 train set (16 

kHz), a wider input window modeling a time context of 250 

ms [13], and a third hidden layer. 

Adapting to the speaker a combination of a LIN network 

and of another linear layer between the last hidden layer 

and the output layer gives a 5.0% WER. 

 As shown in Figure 6, the interpolation approach is still 

able to improve the performance of the SA model to 4.9% 

WER keeping fixed the parameter  to 0.7. 
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Figure 6: Word accuracy on WSJ0. Interpolation of speaker 

independent and speaker adapted LIN network and linear 

hidden layer weights. 

Finally, the interpolation approach has also been tested on 

the TIMIT corpus to test its behavior on a task where a 

fairly large amount of environment/channel adaptation data 

is available. 

The task is phone recognition with a vocabulary of the 45 

phones defined in our standard US-English model (i.e. not 

the ones appearing in the supplied manual transcriptions of 

the TIMIT corpus), with 462 training speakers, 4620 

training sentences, and 168 speakers 1344 test sentences. 

Again, the seed model is the standard SI model. The results 

have been obtained with a single adaptation sentence per 

speaker, and without using a phone bigram language model. 

The two curves of Figure 7 show the results of the 

interpolation of the LIN weights only, and those referring to 

the interpolation of all the weights of the EA and SA 

networks. Here the EA network is far better than the SI one, 

but the LIN interpolation is still able to improve the phone 

accuracy of 2% absolute. A reduced interpolation factor 

=0.3 must be used in this case because the EA network is 

well trained, whereas the SA adaptation is performed with a 

single utterance only. The same adaptation property is 

offered by the interpolation of all the network weights. 

Although, as expected, the network SA model performance 

is very poor, worse than the one obtained with the SI 

network weights or with the LIN SA models, the 

interpolated model outperforms the EA model, and achieves 

a 10% better score than the speaker independent model. 

6. CONCLUSIONS
1

An adaptation technique for ANNs has been presented that, 

similar to the MAP estimation, exploits prior information to 

reduce the effects of data scarcity interpolating the weights 

of two networks.

Good improvements have been obtained in the WSJ0 

adaptation task and with the adaptation of non-native 

speakers of the WSJ1. Moreover, fast adaptation has been 

demonstrated on the TIMIT corpus. 

Work is in progress to apply this approach to other tasks, 
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Figure 7: Word accuracy on TIMIT. Interpolation of 

the environment and speaker adapted LIN or net 

weights. 

such as parallel network training, and to further mitigate the 

problem of units with scarce or no observations. 
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