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ABSTRACT 

 

A method is described for predicting acoustic feature 

variability by analyzing the consensus and relative entropy 

of phoneme posterior probability distributions obtained with 

different acoustic models having the same type of 

observations. Variability prediction is used for diagnosis of 

automatic speech recognition (ASR) systems. When errors 

are likely to occur, different feature sets are considered for 

correcting recognition results. 

 Experimental results are provided on the CH1 Italian 

portion of AURORA3. 

 

1. INTRODUCTION 

 

Intrinsic feature variability depends on the set of classes that 

features have to discriminate. Most frequently considered 

classes are phonemes or phonetic features. Feature 

variability causes ambiguities in classifying speech signal 

segments. Ambiguities can be reduced by using different 

feature streams.  

A single feature stream can be obtained from different 

streams. In [6], a sub-optimal solution is proposed for 

selecting features from two different sets.  Other approaches 

integrate some specific parameters into a single stream of 

features [9].  

Without attempting to find an optimal set of acoustic 

measurements, many recent automatic speech recognition 

(ASR) systems combine streams of different acoustic 

measurements ([4], [10]). In [11] it is shown that log-linear 

interpolation provides good results when used for integrating 

probabilities computed with acoustic models with different 

feature sets. Another possibility [8] consists in combining 

the results of ASR systems in order to reduce word error 

rates (WER). 

In this paper, the possibility is considered to use multi-model 

systems for predicting feature variability as described in 

section 2. A solution is presented in section 3. Using 

variability indicators as diagnosis features, the possibility of 

predicting when it is potentially useful to use a new set of 

features is discussed in section 4. Results with a 

programmable use of a multi-feature system are presented in 

Section 5. 

2. PROBLEM DESCRIPTION 

 

A set a of acoustic features is used in an ASR front-end to 

segment the speech signal and assign to each segment 

hypotheses about class symbols Qq ∈∈∈∈ , where Q is an 

alphabet. Scores are assigned to the hypotheses. A 

frequently used score is the posterior probability 

[[[[ ]]]])nT(YqP a
 computed with acoustic models. )nT(Ya  is a 

vector of values of the elements of a feature 

set
aℑ identifying a point in the acoustic space aΓ . T is the 

interval between two successive analysis frames. Symbols q 

may represent a phoneme, a phoneme in context, a transition 

between two phonemes or a state of a Hidden Markov 

Model (HMM). The impact of features on recognition 

results depends on many factors such as the number and 

complexity of the models and the frames used as 

observations. In spite of the use of context-dependent and 

speaker-dependent models, a tangible amount of errors 

remains which may depend on the imperfection of acoustic 

models or on intrinsic ambiguity of features. In the attempt 

to separate the effect of model imperfection from the effect 

of feature variability, the relative entropy of phoneme 

posterior probability distributions obtained with different 

models is considered. This relative entropy can be computed 

in a point of the acoustic space. When it is low, it is likely 

that the resulting equivocation in phoneme recognition is 

due to intrinsic feature variability. Furthermore, a predictor 

of equivocation is a useful element for the ASR system 

diagnosis. Equivocation between a channel source S which 

emits symbols Qf ∈  and the receiver R which hypothesizes 

symbols Qg ∈  is defined as follows: 

{{{{ }}}} {{{{ }}}}∑∑∑∑−−−−====
g,f

R fgPlogg,fP)S(H   (1) 

Notice that equivocation can be directly compared to the 

source entropy, while symbol error rates and vocabulary size 

or language perplexity are more difficult to compare since 

their dimensions are different.   

The coverage of the acoustic space in which the 

equivocation is expected to be low for an application corpus 

provides an indication of the degree of success for the 
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application. Thus, it is important to find diagnostic 

confidence measures capable of predicting the degree of 

equivocation in points of the acoustic space. For the 

values )nT(Ya  for which equivocation is expected to be 

high, another set of features can be considered. The new set 

of features is likely to be useful if its relative entropy with 

respect to the initial set of features is high and if the 

expected equivocation in the corresponding points is low. 

An ASR setup with two different feature sets is considered 

in this paper together with two very different acoustic 

models, namely Artificial Neural Networks (ANN) and 

Gaussian Mixture Models (GMM). Furthermore, the 

different models are trained with different types of data in 

different conditions. 

 

3. COHERENCE OF HYPOTHESES GENERATED 

WITH DIFFERENT MODELS 

 

Posterior probabilities of phonemes given the acoustic 

observations are obtained with ANNs and GMMs. They are 

indicated as {{{{ }}}}(nT)YqP
a

ANN  and { }(nT)YqP a
GMM . The 

ANN is a time-delay Neural Network which computes the 

probability of being in a state of an HMM, given the 

observation made of a set of input frames. This hybrid 

HMM-ANN system is described in [1]. The input window is 

7 frames wide, and each frame contains the set of features 

extracted by the front-end along with their first and second 

time derivatives. There are two hidden layers. The second 

hidden layer is fully connected with the output layer that 

estimates 686 emission probabilities of phonemes and 

diphone transitions. Only phoneme probabilities are 

considered in this study. The ANN parameters are trained 

with a rich corpus of generic telephone conversations. The 

GMMs are mixtures of 512 gaussians per phoneme. Their 

parameters are estimated with Maximum Likelihood (ML) 

estimation with the training set of each specific application 

and phoneme segments obtained with the ANN. They are 

introduced for deriving confidence indicators and not for use 

in an independent ASR system. The time segment in which 

acoustic features are computed is the same for both model 

types, but it could be different. In general, many model types 

could be considered by varying the phonetic context of the 

same phoneme or by varying the acoustic context in which 

parameters describing time frame nT are computed. Models 

with or without adaptation could also be compared. 

The comparison between phoneme posterior probability 

distributions obtained with ANN and GMM is performed on 

a segment SEGa(b,e,t). Symbol a describes the type of 

features, b indicates the beginning time of the segment, e 

indicates the end time and t the time at the middle. The 

relative entropy between the two posterior probability 

distributions {{{{ }}}})t,e,b(SEGqP)t(P a
a
ANN

a
ANN ====  and 

{{{{ }}}})t,e,b(SEGqP)t(P a
a
GMM

a
GMM ==== , is the Kullback-Leibler 

distance (KLD) indicated as: 

[[[[ ]]]]

{{{{ }}}} {{{{ }}}}[[[[ ]]]]

{{{{ }}}}
{{{{ }}}}
{{{{ }}}})t,e,b(SEGgP

)t,e,b(SEGgP
log)t,e,b(SEGgP

)t,e,b(SEGqP)t,e,b(SEGqPD

)t,e,b(SEGKLD)t(KLD

a
a
GMM

a
a
ANN

Qg
a

a
ANN

a
a
GMMa

a
ANN

aaa

∑∑∑∑====

========

========

∈∈∈∈

(2) 

The symbol with the highest posterior probability is 

considered as the hypothesis generated with each model in 

the given segment. These hypotheses are respectively 

indicated as (((( ))))t,e,bg)t(g a
A

a
A ====  and (((( ))))t,e,bg)t(g a

G
a
G ==== .  

In [7], the average relative entropy has been used for 

selecting a feature set in a group of potential candidates. 

Here, relative entropy is used for measuring the divergence 

of the outputs of two systems fed by the same input data. 

Posterior probabilities obtained with these models may be 

inaccurate. Inaccuracy is reduced by combining these 

posterior probabilities with log-linear interpolation as 

proposed in [11]: 

)t(Plog)1()t(Plog)t(P a
GMM

a
ANN

a α−+α=   (3). 

The interpolation coefficient α is determined to maximize 

the phoneme recognition rate on the training set. Indicators 

of model accuracy are )t(KLDa , and the fact that different 

models assigns the maximum posterior probability to the 

same symbol. This is indicated by the truth of the predicate 

T)t(ca =  iff )t(g)t(g a
G

a
A = . 

4. RELATION BETWEEN MODEL DIVERGENCE 

AND CHANNEL EQUIVOCATION 

 

Two different types of feature streams are considered. The 

first set is based on Multi Resolution Analysis (MRA). 

Motivations for using these features and details are 

described in [2]. The other is based on 12 J-RASTA 

Perceptual Linear Prediction (PLP) coefficients [3] with 

their first and second time derivatives plus total energy and 

its time derivatives. An initial experiment was performed on 

the phonemes of the Italian portion of the CH1 (noisy) part 

of the AURORA3 corpus. The GMMs were trained using 

the Italian portion of the training corpus of AURORA3. The 

test set of the Italian portion of AURORA3 was used for 

both models. A channel model, represented in Figure 1, is 

considered for computing equivocation after forced 

alignment. A computation unit estimates, for all symbols, the 

posterior probabilities )t(Pm
A and )t(Pm

G . The log-linear 

interpolation of them is then computed for hypothesizing the 

phoneme (t)gm . )t(KLDm  is considered as an indicator of 
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confidence related to modeling difficulty for the 

segment [ ])t,e,b(SEG m .  

Feature 

extractor 

ANN 

GMM 

f 

 

S (t)Pm
A

 

(t)Pm
G

R 

decoder
(t)g m

Confidence

evaluation 

)t(KLDm

 
)t(cm  

Figure 1- Diagnosis channel model 

 

The source entropy is 3.5306 bits. Figure 2 shows the 

relation between equivocation and )t(KLD  for the two 

feature sets. Along the X axis are values of X such that 

)t(KLDm <X. MRA features appear to be more suitable for 

the application considered, the set of symbols and the 

models used. Nevertheless, the main difference appears for 

high values of KLD.  

 

 

 

 

 

 

 

Figure 2 – Comparison of equivocations obtained with MRA 

features (continuous line) and JRASTAPLP features (dotted 

line) 

The relation between the truth of )t(cm  and equivocation is 

also worth considering. Figure 3 shows the relation between 

equivocation and )t(KLDm  depending on the consensus 

expressed by the truth of )t(cm . A maximum of 

equivocation of 0.221 with coverage of 54.11% is observed 

for all data when )t(cm  is true. An overall equivocation of 

0.11 was observed for )t(KLDm <0.5 with a coverage of 

40.55%. The overall equivocation is computed with the log 

linear interpolation of the probabilities computed with the 

two models. Three states, representing increasing variability 

expectations, can be identified from these data 

corresponding to )t(KLDm <0.5 (VS1), )t(KLDm >0.5 and 

consensus (VS2) )t(KLDm >0.5 (VS3). Indicators of 

variability are useful confidence descriptors. Notice that they 

are not necessarily related to the entropy measures proposed 

in [5]. Similar relations are obtained with the train and test 

sets and with JRASTA PLP features. With JRASTA PLP 

features an equivocation of 0.17 is found for KLD(t)<0.5 

with a coverage of 18.72%. This suggests that, at least with 

the models used and the application considered, MRA 

features are expected to exhibit lower variability for a larger 

portion of data. A similar behavior with higher equivocation 

was found for the Italian portion of SpeechDat, a large 

vocabulary, continuous speech telephone corpus. The source 

entropy for this corpus is 4.1 bits and the equivocation for 

)t(KLDm <0.5 is 0.5. 
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Figure 3 – Equivocation as a function of intervals of KLD(t) 

when MRA features are used with separate curves for the 

cases in which )t(cm  is true (dashed) and false (dotted).  

If )t(KLDm  is very small (e.g. <0.1), it is very likely that 

equivocation is due to intrinsic feature variability. The 

corresponding equivocation depends on the complexity and 

environment of the application. For the noisy connected 

digits, an equivocation of 0.037 was found. This value 

becomes 0.4 for SpeechDat. As the equivocation measures 

depend only on the acoustic models and the features, 

improvements can be obtained by enriching alphabet Q with 

context dependent symbols and performing model 

adaptation. In spite of this, it is hard to reduce the 

equivocation by a factor of 10. 

It is interesting to investigate the possibility of using 

JRASTAPLP features when variability with MRA features is 

in state VS3. For this purpose, let the vectors Ym(nT) and 

Yj(nT) respectively represent two different observations with 

MRA and JRASTAPLP features. Frame relative entropy is 

computed as follows:  

[ ] [ ])nT(P)nT(PDnTKLD j
A

m
Amj =  (4). 

 

If )nT(KLDmj  is low, that means that additional features do 

not provide a significant new amount of information. Notice 

that such a measure is independent from the lexicon and 

language models. The coverage as a function of KLD 

intervals has been analyzed. For KLD<1 a coverage of 88% 

was observed, indicating that the two feature sets provide 

very often rather similar probability distributions. 
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6. USING MULTIPLE FEATURE SETS FOR ASR 

 

The possibility of predicting feature variability makes it 

possible to introduce a new paradigm for integrating 

different feature sets. Given a feature set, e.g. MRA, it is 

possible to estimate the parameters of a Gaussian mixture 

[ ]{ })(,,, nTYN m

jjj Σµω . A partition in the space is 

obtained by considering zones in which each Gaussian 

[ ])(,, nTYN m

jj Σµ  provides the highest probability 

density. If the partition is detailed enough, one may assume 

that the posterior probability )(qPm

j  of symbol q exhibits 

little variability in each zone. A posterior probability 

)(qPj can be estimated in a learning phase using the feature 

set or a combination of sets which provides the lowest 

equivocation in that zone. During recognition, posterior 

probabilities are computed as follows: 

[ ] )()(,,)(
1

qPnTYNYqP j

J

j

m

jjjn ∑
=

Σ= µω  

A simple experiment was performed using the CH1 portion 

of the Italian test set in AURORA3 by choosing, for 

computing )(qPj , the most appropriate feature set between 

MRA and JRASTAPLP features. Phoneme posterior 

probabilities were computed with ANN. 

The overall WER decreases from 20.34 with MRA features 

to 18.06% by switching feature sets for computing )(qPj . It 

was also observed that 58% of the correctly hypothesized 

words with MRA/ANN exhibit consensus between all the 

phonemes in each word and the corresponding )(tg m

G . 

 

CONCLUSIONS 

An approach to characterize feature variability has been 

proposed. The results are used to derive confidence 

indicators based on which the use a new feature set can be 

programmed. By using it on 37.5% of the sentences a WER 

reduction of 11.2 % was observed on the CH1 test set of the 

Italian portion of AURORA3.  

New strategies will be investigated for performing a more 

accurate selection of speech segments for which high feature 

variability is expected. The possibility will also be 

investigated of introducing a programmable, more effective, 

local use of additional feature sets.  
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