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ABSTRACT
We look at the problem of extracting geometric functions such

as spatial transformations and curves delineating edges to sub-

pixel accuracy from noisy, sampled data. We analyze the

stochastic properties of continuous B-spline interpolation to

show that, in general noisy circumstances, sub-pixel accuracy

is not obtainable when using low degree B-splines. Results

using magnetic resonance image (MRI) data are shown.

1. INTRODUCTION

Many modern image processing operations can be formulated

as a variational energy optimization problem where the goal is

to estimate a spatial function f (a function that takes an input

parameter or coordinate and outputs an image coordinate) that

minimizes (or maximizes) some integral equation operating

on the intensity values of an image I(x) (or set of images

I1(x), I2(x), · · · ):
f = arg min

f ′
Ψ(I1(x), I2(x), · · · , f ′) (1)

where Ψ usually represents an integral over the spatial do-

main of the image(s). More details about function f are given

later. Example of image processing applications that allow

such interpretation include image registration, image segmen-

tation, edge detection, model-based tracking, and others. The

cost function above can be optimized directly by using a non-

linear optimization method. Alternatively, Euler-Lagrange

equations for the problem can be derived, from which iter-

ative solutions arise naturally. In practice, whether iterative

solutions are derived based on Euler-Lagrange equations or

direct nonlinear optimization, computational considerations

lead to discretizations of the cost function. This is is nor-

mally achieved by replacing any continuous integrals in (1)

with finite sums.

In many applications, such as nonrigid biomedical image

registration, and sub-pixel edge detection, it is desirable that

the solution f to the equations above can be estimated to sub-

pixel accuracy. To that end, researchers usually employ a con-

tinuous approximation model for the images being analyzed.
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In this article we look at the problem of solving functional

optimization-based image processing problems to sub-pixel

accuracy when the digital images contain noise. Specifically

we look at the problem of obtaining accurate sub-pixel esti-

mates for image registration problems as well as for edge de-

tection. We investigate the performance of B-spline interpo-

lators within this context and show that, because of inevitable

system noise, low degree interpolators are generally not capa-

ble of achieving sub-pixel accuracy because they cause sys-

tematic local optima artifacts in Ψ(· · · ). We show that as the

degree of the B-spline interpolator used increases, however,

sub-pixel accuracy may be obtainable as the artifactual oscil-

lations decrease in magnitude.

2. THEORY

2.1. Stochastic image model

We use a simple linear, additive noise, stochastic model for

the image formation process:

S(q) =
∫

W (x)Υ(q − x)dx + e(q) (2)

where S(x) is the measured image, x ∈ R
d, q ∈ Z

d orga-

nized in an Md grid, W (x) the object being imaged, Υ(x)
the transfer function of the imaging system, and d the dimen-

sion of the image. e(q) is a zero-mean random variable repre-

senting the influence of noise sources (thermal, physiological,

etc.), and it is statistically independent from the signal part of

the image. Through simple substitution, it is trivial to show

that the covariance matrix RS(q1,q2) of the sampled image

S(q) is equal to the covariance of the random process e(x),
Re(q1,q2).

2.2. B-spline image modeling

We look at the B-spline family of basis functions, where β0(x)
is the centered, normalized, rectangular pulse and βn(x) =
βn−1 ∗ β0(x), while n refers to the degree of the basis func-

tion. Note that when d > 1, βn(x) =
∏d

i=1 β(xi). A contin-

uous model for the sampled image may be obtained through
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Fig. 1. Variance of a white noise discrete random process in-

terpolated using B-splines of different degrees. Part (a): vari-

ance of random process itself as a function of spatial coordi-

nate x. Part (b): variance of first derivative of random process

made continuous with B-splines of different degrees.

a linear combination of basis functions βn(x):

Ŝ(x) =
∑
i∈Zd

c(i)βn(x − i), (3)

where the coefficients c(i) are obtained by solving a linear

system. Alternatively, the continuous model can also be ob-

tained through inverse filtering [1, 2] by:

Ŝ(x) =
∑
i∈Zd

S(i)ηn(x − i) (4)

where ηn(x) is known as the cardinal B-spline interpolator

and is given by:

ηn(x) =
∑
k∈Zd

(βn)−1(k)βn(x − k), (5)

where (βn)−1(k) is the uniquely defined convolution inverse

[1, 2].

2.3. Covariance properties of interpolated signals

The covariance function of the interpolated image Ŝ(x) is

given by:

RŜ(x1,x2) =
∑

q1,q2∈Zd

ηn(x1−q1)RS(q1,q2)ηn(x2−q2).

(6)

If we are dealing with band-limited white noise, for example,

the variance of an interpolated value Ŝ(x) is given by:

RŜ(x,x) = σ2
∑
q∈Zd

[ηn(x − q)]2 , (7)

where σ2 = Re(x,x). Similarly, the variance of a derivative

of Ŝ′(x) is:

RŜ′(x,x) = σ2
∑
q∈Zd

[(ηn)′(x − q)]2 . (8)

In Figure 1 we plot equations (7) and (8), with σ2 = 1,

for cardinal B-spline interpolators of several degrees for x ∈
[0, 1]. Note that as the degree of the interpolator increases,

RŜ tends to σ2. This is to be expected since, as shown by

Aldroubi et al. [3] ηn(x) → sinc(x) as n → ∞, and it is

easy to show that
∑∞

q=−∞ [sinc(x − q)]2 = 1, ∀x.

3. APPLICATIONS

3.1. Sub-pixel image registration

Sub-pixel accuracy in image registration (alignment) is desir-

able, since many biological structures of interest, for exam-

ple, are of the size of a pixel or so. Moreover, in applications

where it is necessary to estimate rotations, and general elastic

transformations, one has no choice but to use a strategy that

estimates the values of the images in locations which were not

originally sampled.

To demonstrate the effects of low degree interpolation on

image registration methods, we look at the following exam-

ple. A source image S(q), with q ∈ Z
2 organized in an

M ×M grid, is translated with respect to a target image T (q)
by

Ŝ(q − t) =
∑
i∈Zd

S(i)ηn(q − t − i), (9)

where t = {t, 0} is a simple translation vector in one dimen-

sion of the image. Note that this is a simple linear operation

on the intensity values of the images. Thus, if we write S
to represent the digital image S(q) in vector notation, a trans-

lated version of the same image can be computed with a linear

opration FtS, with the values of Ft determined by the equa-

tion above. At each translation value, the discrete 2-norm of

the difference between the target and translated source im-

ages is used to measure the alignment between the images.

The value t for which the discrete 2-norm is minimized is the
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optimal translation value. In the context of the energy mini-

mization framework described earlier, this translates to:

Ψ(S(f(q)), T (q), f) = ‖FtS − T‖2 (10)

where T is the target image in vector notation, and ‖S‖2 =
1

M2

∑M2

i=1 (S(qi))
2
.

Let S = W̃S + eS represent the vector of sampled image

values (the vector notation for equation (2)). Similarly, let the

target image in vector notation be T = W̃T + eT. Insert-

ing these into (10), the objective function being minimized

becomes:

‖FtS−T‖2 = ‖FtW̃S−W̃T‖2+‖eT‖2+‖FteS‖2. (11)

If the noise process is weakly stationary ‖FteS‖2 is equiva-

lent to a sample variance estimate, which, as shown in part a

of Figure 1, oscillates according to equation (6) (equation (7)

in the case of white noise):

‖FteS‖2 ≈ RŜ(t, t). (12)

Thus, computational algorithms that seek to optimize 10 are

likely to converge to one of the many artificial local optima,

instead of a ’true’ solution.

The artifactual oscillations in the objective function can

be reduced using zero degree B-spline interpolation (near-

est neighbor). However, this is not advisable since sub-pixel

measurements would not be possible. Oscillations can also be

avoided by using a continuous 2-norm instead of the discrete

one in (10). This, however, could be computationally imprac-

tical for all but the most trivial applications. Another alterna-

tive is to ’smooth’ the image prior to computation of the cost

function so as to minimize the oscillations in ‖FteS‖2. This,

however, is also not optimal since blurring can reduce edge

information that can be critical for obtaining a good match.

Finally, as shown in the results section, the magnitude of the

oscillations can be decreased by increasing the degree of the

B-spline interpolant.

3.2. Sub-pixel edge detection

Very similar arguments can be used to describe artificial oscil-

latory behavior in cost functions used to detect edges in noisy

images. Let f(s) = (fx(s), fy(s)), s ∈ [0, 1], be a curve in

two dimensional space. Image edges can be detected by find-

ing f(s) such that a line integral following the path of f(s)
over a potential energy field derived based on image values

is minimized. The potential energy is usually computed as

the magnitude squared of the gradient estimated based on the

image data. Mathematically,

Ψ(S(q), f) =
∫ 1

0

‖∇Ŝ(f(s))‖2ds

≈
T∑

i=1

‖∇Ŝ(f(iτ))‖2, (13)

Fig. 2. Magnetic resonance image used for experimental re-

sults. For the results relating to sub-pixel edge detection, the

white line shown towards the left of the figure was translated

from left to right.

where τ is the distance between values s in the curve f(s) and

T is the total number of points being summed. As opposed to

the registration example given above, equation (13) is max-

imized instead of minimized. Again using the image model

(2), and assuming that the noise component is independent

from the signal, the equation above can be simplified:

Ψ(S(q), f) =
T∑

i=1

‖∇W̃ (f(iτ))‖2 + ‖∇e(f(iτ))‖2. (14)

The term
∑T

i=1 = ‖∇e(f(iτ))‖2 again can be interpreted as

a sample variance computation and depending on curve f and

choice of τ can contain artificial oscillatory behavior. Again,

a common choice is to ’blurr’ the intensity value of the images

prior to computations. By definition, however, this operation

will reduce edge information. This is especially counterpro-

ductive since image edges are being sought. As shown in Fig-

ure 1, part b, another option to reduce the artificial oscillatory

behavior is to increase the degree of the B-spline interpolant

being used.

4. RESULTS

The results in this section were computed based on the MRI

image of the human brain shown in Figure 2. This two di-

mensional image was taken from a realistic MRI simulator

[4]. In the first example, the image was translated with re-

spect to itself, at sub-pixel values, and the value of the discrete

2 norm between the original image and the translated image

was measured for each translated value. The experiment was

repeated using several of the B-spline interpolators aforemen-

tioned. As evident from the results shown in Figure 3, part a,

low degree interpolators tend to produce objective functions

that contain local optima indentations caused by interpolation

on noise. As the degree of the B-spline increases, however,
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Fig. 3. Image registration (part a) and edge detection (part b)

cost functions computed using the image shown in Figure 2

as the line was translated from left to right.

these artifacts are diminished and almost not noticeable when

using B-splines of degree 5 or greater.

In a second experiment, the energy of the first derivative

of the image was computed over a short straight line (white

line shown in Figure 2) as the line was translated continu-

ously from left to right. As can be seen from this figure, the

line is placed on a background region whose intensity values

are governed by system noise. Thus, ideally, the integral of

image derivatives over the line should remain flat as the line

is translated over background regions. Fluctuations resulting

from noise should be random, and, ideally, no systematic lo-

cal optima should occur. To remove random fluctuations in

the value of the integral as the line is translated the image was

smoothed with a 3x3 box filter prior to the computations. The

experiment was repeated using the several B-spline interpo-

lators described earlier. Results are shown in Figure 3, part

b. As seen from these results, cost functions computed using

low degree interpolators contain systematic local optima arti-

facts. As the degree of the B-spline increases, the magnitude

(height of the bumps) of such artifacts decreases.

5. DISCUSSION AND CONCLUSION

We’ve shown that B-spline-based extraction of geometric func-

tions to sub-pixel accuracy is not possible when using low

degree basis functions. In image registration problems the so-

lution will be biased towards the most ’blurred’ image, while

in edge detection problems, the solutions will be biased to-

wards half-pixel coordinates. The arguments used here to ex-

plain the local optima artifacts in registration curves can be

expanded to include other cost functions (or similarity mea-

sures as they are called in the image registration literature)

such as correlation and mutual information [5, 6].

Several strategies can be used for reducing the bias in the

solutions. The most commonly used one is to reduce the in-

fluence of noise by low-pass filtering the input images prior to

the computations. Increasing the degree of B-spline interpo-

lators, as we have shown, can also help reduce the bias in the

solutions obtained. Finally, ideal sinc interpolation can also

be used to remove artifactual oscillations in the cost functions

[5, 6]. In many useful circumstances sinc-type interpolation

can be implemented efficiently using the fast Fourier Trans-

form algorithm [6] for improved optimization.
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