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ABSTRACT

Cramér-Rao bounds have been previously generalized to the

class of nonlinear estimation problems on manifolds. This

new approach can be used to derive a broad class of quadratic

error performance bounds. A generalized intrinsic score func-

tion on the manifold-valued parameter space is introduced

that distinguishes one bound from another. The derivation

itself is invariant to transformations of the parameter space

and score space. The resulting generalized Weiss-Weinstein

bounds are shown to be invariant to certain transformations

of the score. Applications of this work include cases where

ambiguities, low signal-to-noise, or low sample support limit

the utility of Cramér-Rao bounds, and more general quadratic

bounds on manifold-valued parameters must be considered.

1. INTRODUCTION

Many signal processing applications involve estimation prob-

lems on manifolds, such as the sphere (e.g., unit-noise-gain

filters), subspaces (e.g., interference suppression and signal

detection), and covariance matrices (e.g., adaptive filtering

and spectral estimation). Unlike estimation problems tradi-

tionally posed on vector spaces, the operations of vector ad-

dition and subtraction cannot be used to compare different

points in the manifold-valued parameter space, and therefore

the standard least-squares approaches cannot be used to de-

rive the Cramér-Rao bounds or the class of more general Weiss-

Weinstein quadratic bounds on the error covariance matrix.

Cramér-Rao bounds have been previously generalized to the

class of nonlinear estimation problems on manifolds [11], and

this new approach can be used to derive a broad class of

quadratic error performance bounds to establish new estima-

tion bounds on manifolds, including the Weiss-Weinstein [13],

Bhattacharyya [4], Barankin [2], and Bobrovsky-Zakai [5]
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bounds on manifolds, as well as the previously established

Cramér-Rao bound [6,9,10,14]. A generalized, intrinsic score

function on the manifold is introduced that distinguishes one

bound from another. The derivation itself is invariant to trans-

formations of the parameter space and score space. The gen-

eralized Weiss-Weinstein bounds are shown to be invariant to

certain transformations of the score. Applications of this work

include cases where ambiguities, low signal-to-noise, or low

sample support limit the utility of Cramér-Rao bounds, and

more general quadratic bounds on manifold-valued parame-

ters must be considered.

2. THE ESTIMATION PROBLEM

2.1. The score function

Given the statistical model f(z|θ), we are concerned with the

problem of estimating the manifold-valued parameter θ ∈ M ,

where z is a random vector of measurements and M is a

given n-dimensional real manifold. Common examples in

signal processing include the unit-sphere, the space of orthog-

onal/unitary matrices, the Grassmann or Stiefel manifolds, or

the space of covariance matrices [11]. For a given coordi-

nate chart on M , we may imagine the manifold-valued pa-

rameter to be decomposed as the vector of real numbers θ =
(θ1, θ2, . . . , θn)T ∈ R

n. An estimate θ̂(z) of θ is evaluated

using the p-dimensional vector-valued score function s(θ).
The score function is a very general concept that expresses

the multitude of quadratic performance bounds that will be

considered. For the example of Euclidean space M = R
n, the

two most commonly encountered score functions are the error
score sθ̂(θ) = θ̂ − θ and the Fisher score sF(θ) = ∂�/∂θ =
(∂�/∂θ1, ∂�/∂θ2, . . . , ∂�/∂θn), where �(z|θ) = log f(z|θ)
is the log-likelihood function.

2.2. Score functions on vector bundles

To define the score function in this very general intrinsic set-

ting, we require the assignment of a p-dimensional vector

space Vθ to every point θ in M . Such a construct is called

a vector bundle over M [1], which we shall denote as F (Fig-

ure 1). In the simplest case Vθ = R
p, however, there are im-
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Fig. 1. The vector bundle F over the manifold M . Each

point θ ∈ M has an associated p-dimensional vector space

Vθ associated with it. The score s(θ) is a vector lying in the

vector space Vθ.

portant cases where a generalization is necessary. For exam-

ple, the most commonly encountered vector bundles over M
are the tangent space TM , in which each point on M has a

naturally defined tangent plane TθM , and the cotangent space

T ∗M with the naturally defined cotangent planes T ∗
θ M . Us-

ing coordinates, we imagine the parameter θ to be an n-by-1
column vector, tangent vectors in TθM to also be n-by-1 col-

umn vectors, and cotangent vectors in T ∗
θ M to be 1-by-n row

vectors. Of course, the vector bundle F need not be TM or

T ∗M , as the dimensionality of the score function is not nec-

essarily that of the manifold. Furthermore, given a fixed vec-

tor space V , it may be easy to visualize the vector bundle F
to be the so-called trivial bundle M × V (the vector space

Vθ at θ is a copy of V ); however, this is not necessarily the

case.1 A “point” f in the vector bundle F is a pair (θ,v),
where θ ∈ M lies in the manifold and the vector v ∈ Vθ

lies in the vector space above θ. For particular coordinates

θ = (θ1, θ2, . . . , θn) on M and a particular basis e1, e2,

. . . , ep of Vθ, the point f = (θ,v) in F is represented as the

(n + p)-vector f = (θ1, θ2, . . . , θn, v1, v2, . . . , vp), where

v =
∑

k vkek. By abuse of notation, points in the vector

bundle may also be written as the direct sum f = θ ⊕ v,

in which case it is understood that a particular set of coordi-

nates on M and a basis for Vθ have been specified. In the

Euclidean setting M = R
n, we have the trivial vector bundle

F = R
n × R

p.

Definition 1 Let M denote a manifold and F ⊃ M be a vec-
tor bundle over M . The score function s is a map

s : M → F (1)

1A simple counter-example is provided by comparing the infinite cylin-

der S1 ×R (the set-theoretic product of the circle with the real line), and the

Möbius strip S1
� R (the so-called “twisted” product of the circle with the

real line), in which the real line is twisted 180◦ around the circle. Topologi-

cally, the two-sided cylinder is not equivalent to the one-sided Möbius strip.

Therefore, a vector bundle F is not necessarily equivalent to the trivial bundle

M × V , though the trivial bundle is in fact encountered most frequently.
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Fig. 2. The error score function. The error score function

sθ̂(θ) = exp−1
θ θ̂ is shown, which is a section of the tangent

bundle TM . The mean of the error function is the estimator

bias vector field b(θ) = E [sθ̂].

that assigns to every point θ ∈ M a unique vector s(θ) ∈ Vθ.
Such a function is also called a section of F [1].

For the case of an arbitrary Riemannian manifold [11],

two examples of score functions are:

1. The error score. The error score

sθ̂(θ) = exp−1
θ θ̂ ∈ TθM, (2)

is a section of the tangent bundle TM , where exp−1
θ

denotes the inverse exponential map (assuming that it

is well-defined). In this case Vθ = TθM , the tangent

plane at θ. The error score and the inverse exponen-

tial map are shown in Figure 2. For the Euclidean case

M = R
n, sθ̂(θ) = θ̂ − θ.

2. The Fisher score. The Fisher score is the section in

the cotangent bundle T ∗M defined as

sF(θ) = d�|θ ∈ T ∗
θ M, (3)

where �(z|θ) is the log-likelihood function and d� is

the differential [1,11] of �. In this case Vθ = T ∗
θ M , the

cotangent plane at θ. Note that for the Euclidean case

M = R
n,

d� =
∂�

∂θ
=

(
∂�

∂θ1
,

∂�

∂θ2
, . . . ,

∂�

∂θn

)
∈ R1×n. (4)

3. THE INTRINSIC WEISS-WEINSTEIN
REPRESENTATION

Let f(z|θ) be a statistical model for the manifold-valued pa-

rameter θ ∈ M , and let s : M → F be a score defined on

the vector bundle F . In this section we will derive the gener-

alized Weiss-Weinstein representation [13] for quadratic co-

variance bounds on the error sθ̂(θ) = exp−1
θ θ̂. Looking
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ahead, it may be instructive for the reader to contrast the two-

channel approach to performance bounds developed here and

elsewhere [7, 8, 10, 13] to the one-channel approach used for

Cramér-Rao bounds [11, 14]. The two-channel approach al-

lows a direct comparison between the estimation error and

the score function. Consider the Whitney sum TM ⊕ F of

the tangent bundle TM with the vector bundle F [1]. This

is a vector bundle over M whose vector space at θ is the di-

rect sum TθM ⊕ Vθ. We will use these technicalities in the

analysis of the covariance of the combined two-channel score

sθ̂ ⊕ s : M → TM ⊕ F. (5)

The estimator bias and mean score vectors are given by the

first moments

b(θ) = E [sθ̂(θ)], and µs(θ) = E [s(θ)]. (6)

The covariance of the two-channel score sθ̂ ⊕ s is given by

the tensor product

Ctwo
def= E

[
(sθ̂ ⊕ s − b ⊕ µs) ⊗ (sθ̂ ⊕ s − b ⊕ µs)

]
. (7)

For particular coordinates θ = (θ1, θ2, . . . , θn) on M and a

particular basis e1, e2, . . . , ep of Vθ, this tensor/Kronecker

product becomes

Ctwo = E
[(

sθ̂ − b
s − µs

) (
sθ̂ − b
s − µs

)T ]
=

(
C T
TT J

)
, (8)

where C def= E [(sθ̂ − b) ⊗ (sθ̂ − b)] is the n-by-n error co-

variance matrix, T def= E [(sθ̂ − b) ⊗ (s − µs)] the n-by-p

cross-covariance, and J def= E [(s − µs) ⊗ (s − µs)] the gen-

eralized p-by-p information matrix of the score s.

Now we consider the problem of estimating the error sθ̂ =
exp−1

θ θ̂ of the estimator θ̂ from the score s(θ). In gen-

eral, this error estimate is determined by an arbitrary map-

ping φ : F → TM ; however, we will restrict ourselves to a

linearization of this mapping, that is, given coordinates and

a basis for the vector bundle, an affine transformation of the

form

ŝθ̂ = A(s − µs) + a (9)

for some n-by-p matrix A and n-vector a. A standard re-

sult from linear least-squares filtering theory asserts that the

minimum mean-squared error estimate of sθ̂ from s is

ŝθ̂ = TJ−1(s − µs) + b. (10)

It is important to observe that this estimate is intrinsically de-

fined, meaning that it does not depend upon the choice of co-

ordinates on the manifold M or basis in the vector bundle F .

The change of coordinates ϑ = ϑ(θ) and the change of ba-

sis bk = Bek for a nonsingular p-by-p matrix B induce the

transformations

C �→ ACAT, T �→ ATBT, J �→ BJBT, (11)

where A = ∂ϑ/∂θ. Therefore, this estimate transforms as

TJ−1 �→ ATBTB−TJ−1B−1 = ATJ−1B−1 (12)

which possesses the correct invariance for linear transforma-

tions from Vθ to TθM .

Quantifying the covariance of the estimate ŝθ̂ of the error

sθ̂, we consider the linear transformation of the Whitney sum

TM ⊕ F defined by

(
sθ̂ − ŝθ̂
s − µs

)
=

(
I −TJ−1

0 I

) (
sθ̂ − b
s − µs

)
. (13)

The covariance of this error is given by

E
[(

sθ̂ − ŝθ̂
s − µs

) (
sθ̂ − ŝθ̂
s − µs

)T ]
=

(
C − TJ−1TT 0

0 J

)
.

(14)

From this result several fundamental conclusions may be drawn:

1. Error covariance bound. The covariance of the zero-

mean vector sθ̂ − ŝθ̂ is C−TJ−1TT, and because this

covariance is necessarily nonnegative definite, the error

covariance bound is C ≥ TJ−1TT.

2. Estimator efficiency. The error covariance is mini-

mized when C = TJ−1TT, which occurs if and only if

sθ̂ = exp−1
θ θ̂ = TJ−1(s − µs) + b, in which case θ̂

is said to be an efficient estimator of θ.

3. Statistically orthogonal errors. The error sθ̂ − ŝθ̂ is

orthogonal to the centered score s − µs.

4. Statistically orthogonal decomposition. The bias-

compensated error sθ̂ − b decomposes orthogonally as

(ŝθ̂ − b)+(sθ̂ − ŝθ̂), with covariance C = TJ−1TT+
(C − TJ−1TT).

5. Intrinsic performance bounds. The quadratic per-

formance bound and all related results are invariant to

the choice of coordinates on the parameter manifold M
and the choice of basis in the vector bundle F .

4. THE FISHER SCORE

For the case of the Fisher score sF = d�, the information

matrix J is the Fisher information matrix G = E [d� ⊗ d�] =
−E [∇2�], where ∇ is the Riemannian connection on M . It

can be shown [11] that the cross-covariance in this case is

T = I + ∇b, (15)

where ∇b is the covariant differential of the bias vector field

b = E [sθ̂] = E [exp−1
θ θ̂], and the higher-order terms in-

volving the Riemannian curvature have been neglected. The
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Fig. 3. The estimation error and the score for the Euclidean

case M = R
n. In general, the combined two-channel score

sθ̂ ⊕ s lies in the vector bundle TM ⊕ F .

intrinsic quadratic performance bound is the intrinsic biased

Cramér-Rao bound on the error covariance:

C ≥ (I + ∇b)G−1(I + ∇b)T (16)

(again neglecting curvature). In the Euclidean, case M = R
n,

this simply becomes the biased Cramér-Rao bound [14] with

∇b = ∂b/∂θ.

If higher-order covariant derivatives of the log-likelihood

� are used, i.e., ∇k�, k = 1, . . . , K, a generalization of the

Bhattacharyya bound [4] is obtained.

5. INTRINSIC INVARIANCE AND THE
BOBROVSKY-ZAKAI AND BARANKIN SCORES

Here we illustrate the importance of the fact that quadratic

performance bounds in the Weiss-Weinstein class are invari-

ant to affine transformations of the score. That is, the trans-

formation Bs+c transforms the cross-covariance matrix T to

TBT and the matrix J to BJBT, as in Equation (11). There-

fore, for a change of basis of the vector bundle F represented

by the nonsingular p-by-p matrix B,

TBT(BJBT)−1BTT = TJ−1TT, (17)

which is the original bound. In other words, this quadratic

performance bound is intrinsically defined on the vector bun-

dle, and does not depend on any arbitrary choice of basis used

to represent the score function s.

Given a set of “test points” θ1, θ2, . . . , θp, the Bobrovsky-

Zakai score [3, 5] is defined as the p-vector

sBZ(θ) =
(

f(z|θi) − f(z|θ)
f(z|θ)

)
i=1,...,p

= sB − 1, (18)

where

sB =
(

f(z|θi)
f(z|θ)

)
i=1,...,p

(19)

is the Barankin score [2]. Clearly, these two scores are sim-

ply affine translations of each other; therefore, their intrinsic

quadratic performance bounds are the same.

6. CONCLUSIONS

The original quadratic covariance bounds of Weiss-Weinstein

may be extended to quadratic performance bounds for manifold-

valued parameters, producing intrinsic bounds that are invari-

ant to the choice of coordinates on the manifold M and the

choice of basis for the vector bundle over M . One of the key

ideas in the extension is that the estimator error score sθ̂(θ)
may be viewed as a message channel and the (data) score s(θ)
may be viewed as a measurement channel in a virtual two-

channel communication problem. Then the message is esti-

mated as an affine function of the measurement, and standard

least squares theory is used to compute the minimum error

covariance. This error covariance is used to bound the co-

variance of the estimator error. This approach, originally de-

veloped for vector-value parameters is extended to manifold-

valued parameters by generalizing the error score, data score,

and the composite covariance structure to be faithful to the

geometry of the underlying manifold.
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