
LOCAL CONVERGENCE PROPERTIES OF FASTICA AND SOME GENERALISATIONS

Knut Hüper, Hao Shen, Abd-Krim Seghouane

Department of Information Engineering
Research School of Information Sciences and Engineering

The Australian National University
Canberra ACT 0200, Australia

Systems Engineering and Complex Systems Research Program
National ICT Australia

Canberra Research Laboratory, Locked Bag 8001
Canberra ACT 2612, Australia

Knut.Hueper@nicta.com.au, Hao.Shen@rsise.anu.edu.au, Abd-krim.Seghouane@nicta.com.au

ABSTRACT

In recent years, algorithms to perform Independent Compo-
nent Analysis in blind identification, localisation of sources
or more general in data analysis have been developed. Promi-
nent example certainly is the socalled FastICA algorithms
from the Finnish school. In this paper we will generalise the
FastICA algorithm considered as a discrete dynamical system
on the unit sphere to the case where all units converge simulta-
neously, i.e., we consider some kind of parallel FastICA algo-
rithm living on the orthogonal group. In addition we present a
local convergence analysis for the algorithms proposed in this
paper building on earlier work. It turns out that one can treat
these type of algorithms in a similar manner as the Rayleigh
quotient iteration, well known in numerical linear algebra, i.e.
considering the algorithm as a discrete dynamical system on
a suitable manifold. The algorithms presented here are com-
pared by several numerical experiments and simulations.

1. INTRODUCTION

Blind Source Separation (BSS) is a challenging problem in
Statistical Signal Processing. Since the influential paper [4],
in the area of Independent Component Analysis (ICA), sev-
eral efficient ICA algorithms have been developed to solve the
BSS problem successfully. The FastICA algorithm is a promi-
nent ICA algorithm proposed by the Finnish school around
Hyvärinen, Karhunen and Oja, see [5].

The standard FastICA algorithm is a self mapping of the
unit sphere for solving a one-unit linear ICA problem. Re-
cently the first two authors have shown, that for the ideal

National ICT Australia is funded by the Australian Government’s De-
partment of Communications, Information Technology and the Arts and the
Australian Research Council through Backing Australia’s Ability and the
ICT Centre of Excellence Program.

linear ICA model, source signals can be recovered at certain
fixed points of the algorithmic mapping of FastICA. The al-
gorithm has a local quadratic rate of convergence, see [1].

In practice, one would prefer to reconstruct multiple sig-
nals in parallel under certain situations. A socalled symmetric
orthogonalisation was proposed to parallelise the FastICA al-
gorithm, see [5]. In this work we generalise the idea of paral-
lelisation of FastICA. For the algorithms we propose here we
take the standard FastICA as a starting point and develop sev-
eral parallel generalisations. The algorithms are defined on
the orthogonal group Om of order m being a straightforward
generalistaion of the sphere case. Building on earlier work
local quadratic convergence of our algorithms are proved by
means of calculus on manifolds, [3],[1],[2]. This in particular
means that theoretically all signals are extracted simultane-
ously locally quadratically fast. One obvious advantage of
the methods presented in this paper is that accumulated er-
rors from deflation will not occur. The overall computational
complexity seems to be lower than for FastICA including de-
flation. Due to the page restrictions we cannot further com-
ment on this.

Recall, the whitened demixing ICA model can be formu-
lated by the relation Z = X�W , where W ∈ R

m×n is the
whitened observation, the orthogonal matrix X ∈ R

m×m is a
parameterisation as the demixing matrix, and Z ∈ R

m×n is
the recovered signal, see [5].

2. ALGORITHMS

Let upper case letters denote matrices. The set Sn−1 denotes
the set of vectors in R

n with unit norm. Let denote x ∈ Sm−1

a column of the matrix X = [x1, . . . , xm] and w ∈ R
m one

of the columns of W , respectively. By � we denote transpo-
sition. I denotes the identity matrix.

V 1009
142440469X/06/$20.00
©2006 Australian Crown Copyright ICASSP 2006

The standard one-unit FastICA algorithm can be formu-
lated as a self map

ψ :Sm−1→Sm−1, x �→
E[G′(x�w)w]−E[G′′(x�w)]x

‖E[G′(x�w)w]−E[G′′(x�w)]x‖
. (1)

Here the function G : R → R is a user defined contrast func-
tion being sufficiently smooth, convex and even, G′, G′′ being
first and second derivatives. The central computational step in
our generalisations of FastICA is still a one-unit FastICA step.

Parallel FastICA with so-called symmetric orthogonalisa-
tion can be restated as follows, [5]

Algorithm 2.1 1. Initialise X(0) =[x
(0)
1 , . . . , x

(0)
m]∈Om.

Set k = 0.

2. For i = 1, 2, . . . ,m, compute x
(k+1)
i = ψ(x

(k)
i).

3. Set X̂(k+1) = [x
(k+1)
1 , . . . , x

(k+1)
m].

Compute X(k+1) = (X̂(k+1)X̂(k+1)�)−1/2X̂(k+1)

(polar decomposition).

4. If ‖X(k+1) − X(k)‖ (Frobenius norm) is small enough
stop; otherwise set k = k + 1 and goto 2.

In the sequel we will call the inner iterations over the num-
ber of columns a sweep. A few direct modifications to im-
prove the efficiency of Algorithm 2.1 are in order here. In
step 3, rather than performing reorthogonalisation by a polar
decomposition requiring an SVD, we replace it by the Gram-
Schmidt orthogonalisation process, efficiently implemented
by a QR-decomposition. There are two important differences
between these two orthogonalisation approaches. Firstly, the
QR-approach will ensure that the iterates of the first column
of the matrix X are exactly the same as the ones we would
get by iterating one-unit FastICA to this column alone. This
is not ensured by the polar decomposition. To the best of
the authors’ knowledge the convergence of the polar decom-
position aproach is not supported by any theory up to now.
A further minor improvement is to skip any FastICA itera-
tions on the last column. After finishing the FastICA step of
the second last column, the last column is up to sign already
uniquely determined by the subsequent Gram-Schmidt pro-
cess. Any further refinement during the present sweep on the
last column would be just wasted time.

Hence, the modified parallel FastICA is as follows

Algorithm 2.2 1. Initialise X(0) =[x
(0)
1 , . . . , x

(0)
m]∈Om.

Set k = 0.

2. For i = 1, 2, . . . ,m − 1, compute x
(k+1)
i = ψ(x

(k)
i).

3. Set X̂(k+1) = [x
(k+1)
1 , . . . , x

(k+1)
m−1 , x

(k)
m].

Reorthogonalise X̂(k+1) = QR (QR-dec.).
Set X(k+1) = Q.

4. If ‖X(k+1) − X(k)‖ (Frobenius norm) is small enough
stop; otherwise, set k = k + 1 and goto 2.

The Algorithms 2.1 and 2.2 share the feature that during each
sweep (step 2), FastICA is applied to all columns indepen-
dently and simultaneously. The parallelism is obvious. To
the best of our knowledge there exists up to now no theory

which could ensure that after each sweep the matrix X has
still full rank. Even worse, closely related but simpler al-
gorithms recently proposed in the numerical linear algebra
community to compute eigenvectors of a real symmetric ma-
trix via a parallel version of Rayleigh Quotient Iteration lack
such a property as well, see [6],[2] for details. On the other
hand, most of the algorithms mentioned in [6],[2] and all al-
gorithms presented here, share the property that they are lo-
cally welldefined around fixed points and locally smooth as
well. Consequently, we can apply calculus to explore their
local convergence properties.

To the best of our knowledge not very much is known
about global convergence properties of the one-unit FastICA
algorithm. Even if we would know that FastICA converged
globally one could not easily derive from this similar proper-
ties for Algorithm 2.1. It is even some kind of miracle that by
numerical evidence this algorithm seems to work sometimes
well. See the experiments below. The situation is different
for Algorithm 2.2. By construction, the sequence of iterates
of the first column of the matrix X would certainly converge
globally as well being a one-unit FastICA sequence by itself.

Because FastICA seems to converge almost always, we
propose the following generalisation.
Algorithm 2.3 1. Initialise X(0) =[x

(0)
1 , . . . , x

(0)
m]∈Om.

Set k = 0.

2. Compute x
(k+1)
1 = ψ(x

(k)
1).

3. For i = 2, . . . ,m − 1

compute [x
(k+1)
1 , . . . , x

(k+1)
i−1] = QR (QR-dec),

compute y = (Im − QQ�)x
(k)
i ,

set x̂
(k+1)
i = y/‖y‖,

evaluate x
(k+1)
i = ψ(x̂

(k+1)
i).

4. Set X̂(k+1) = [x
(k+1)
1 , . . . , x

(k+1)
m−1 , x

(k)
m].

Reorthogonalise X̂(k+1) = QR (QR-dec.).
Set X(k+1) = Q.

5. If ‖X(k+1) − X(k)‖ (Frobenius norm) is small enough
stop; otherwise, set k = k + 1 and goto 2.

Note that in Algorithm 2.3 the QR-decomposition of Step 3
can be considered being unique and smooth even in the case
of a rectangular matrix as long as it is full rank.

Experimentally, Algorithms 2.2, 2.3 share a common fea-
ture. After the first few sweeps, columns closer to the first
one produce better estimates than the ones closer to the last
column. Our next algorithm privileges left columns over right
ones to intensify this effect.

Algorithm 2.4 1. Initialise X(0) =[x
(0)
1 , . . . , x

(0)
m]∈Om.

Set k = 0.

2. For j = 2, . . . ,m − 1

(a) For i = 1, . . . , j − 1

set x
(k)
i = ψ(x

(k)
i)

(b) Compute [x
(k)
1 , . . . , x

(k)
j−1] = QR (QR-dec).

Compute y = (Im − QQ�)x
(k)
j .

Set x
(k)
j = y/‖y‖.

V 1010

3. For i = 1, . . . ,m − 1

compute x
(k+1)
i = ψ(x

(k)
i).

4. Set X̂(k+1) = [x
(k+1)
1 , . . . , x

(k+1)
m−1 , x

(k)
m].

Reorthogonalise X̂(k+1) = QR (QR-dec.).
Set X(k+1) = Q.

5. If ‖X(k+1) − X(k)‖ (Frobenius norm) is small enough
stop; otherwise, set k = k + 1 and goto 2.

All the above algorithms can be further modified. At each
sweep, rather than applying one standard FastICA onto each
column, we can increase the number of FastICA per column,
see the simulations below.

3. NUMERICAL EXAMPLES

To illustrate the performance of our FastICA algorithms, we
consider a classical audio signal separation example, see

http://www.cis.hut.fi/projects/ica/cocktail/cocktail en.cgi.
The dataset consists of nine different sound signals.

We applied Algorithms 2.1-2.4 using up to 16 FastICA
iterations per column. Figure 1-4 illustrate the convergence
properties of these algorithms measured by the distance of the
accumulation point to the current iterate, i.e. by ‖X (k)−X∗‖,
with X∗ the demixing matrix. By increasing the number
of FastICA iterations per column in Algorithm 2.1 the con-
vergence rate slows down. The opposite is true for Algo-
rithms 2.2-2.4, the number of sweeps required to reach a cer-
tain accuracy is significantly smaller. Certainly, increasing
the number of FastICA iterations per column increases the
computational burden per sweep as well.

We then fixed the number of FastICA iterations per col-
umn to the value of four. In Fig. 5-8 the distance ‖x

(k)
i −

x∗
i ‖ for i = 1,. . ., 9 is plotted against the number of sweeps

required. What one can observe from the last four figures
is that Algorithm 2.1 converges, if at all, extremely slowly,
producing oscilations for all the signals. We conjecture that
this is due to the wrong reorthogonalisation process used (po-
lar decomposition). However, Algorithms 2.2-2.4 do con-
verge without oscillation phenomena. These three algorithms
share the feature of reconstructing the individual source sig-
nals with different speed.

4. LOCAL CONVERGENCE

We conclude by briefly discussing local quadratical conver-
gence for Algorithms 2.2-2.4. The number of FastICA itera-
tions per column will not matter our analysis as long as it is
greater or equal to 1. The following Theorem is a theoreti-
cal result, usually not verified by real world applications or
simulations due to the finiteness of the sample space. This
is in particular the case for a set of nonperiodic signals to be
decomposed into independent ones.

Heuristically, Algorithms 2.2-2.4 decouple asymptotical-
ly into independent and individual FastICA iterations on each
column. As shown in [1] one-unit FastICA is locally quadrat-
ically convergent. One is tempted to conclude that the overall

algorithm would then have the same convergence properties.
This is indeed the case.

Theorem 4.1 If Algorithm 2.2, 2.3, or 2.4 converges to the
demixing matrix X∗, it will converge locally quadratically
fast.

PROOF (SKETCH). We will consider each of the algorithms
as a self map ψ : Om → Om on the set of orthogonal ma-
trices. It is easily seen that the demixing matrix X∗ is in-
deed a fixed point. The derivative of this map evaluated at
X∗ is the linear map Dψ(X∗) : TX∗Om → TX∗Om with
TX∗Om the tangent space of Om at X∗. Each iteration con-
sists of a composition of FastICA transformations and pro-
jections followed by a reorthogonalisation step using a QR-
decomposition. By the chain rule, the derivative of one it-
eration step is therefore the composition of the linear maps
corresponding to the derivatives of the individual transforma-
tions. Each partial step, either FastICA or projection affects
only a certain column leaving all the other columns invariant.
Using Corollary 3.1 in [1] the derivative of such a partial step
annihilates first order perturbations in the corresponding col-
umn leaving invariant all other first order perturbations. It is
easily seen that the derivative of a projection evaluated at the
fixed point acts as the identity. The same holds true for the
derivative of the QR-decomposition. The result follows by a
Taylor-type argument, i.e.,

‖ψ(Xk) − X∗‖ ≤ sup
Z∈Ū

‖D2 ψ(Z)‖ · ‖X(k) − X∗‖2 (2)

with Ū being the closure of a sufficiently small open neigh-
borhood of X∗ ∈ Om. �

5. REFERENCES

[1] H. Shen and K. Hüper, “Local Convergence Analysis of
FastICA,” submitted to ICA 2006, Charleston, USA.

[2] K. Hüper, Mathematical Systems Theory in Biology,
Communications, Computation, vol. 134 of The IMA Vol-
umes in Mathematics and its Applications, chapter: A
Dynamical System Approach to Matrix Eigenvalue Al-
gorithms, pp. 257–274, Springer, New York, 2003.

[3] M. Nikpour, K. Hüper, and J.H. Manton, “Generaliza-
tions of the Rayleigh quotient iteration for the iterative
refinement of the eigenvectors of real symmetric matri-
ces.,” in Proceedings of the 30th IEEE ICASSP, Philadel-
phia, USA, 2005, pp. V1041–V1044.

[4] P. Comon, “Independent component analysis, a new con-
cept?,” Signal Processing, vol. 36, pp. 287–314, 1994.

[5] A. Hyvärinen, J. Karhunen, and E Oja, Independent Com-
ponent Analysis, Wiley, New York, 2001.

[6] M. Nikpour, Reduced Rank Signal Processing, Ph.D.
thesis, University of Melbourne, Australia, 2002.

V 1011

0 10 20 30 40 50 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

Fr
ob

en
iu

s
no

rm
 (

X
−

X*
)

1
2
4
8

Fig. 1. Convergence of Algorthm 2.1.

0 10 20 30 40 50 60
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

Fr
ob

en
iu

s
no

rm
 (

X
−

X*
)

1
2
4
8

Fig. 2. Convergence of Algorithm 2.2.

0 10 20 30 40 50 60
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

Fr
ob

en
iu

s
no

rm
 (

X
−

X*
)

1
2
4
8
16

Fig. 3. Convergence of Algorithm 2.3.

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

Fr
ob

en
iu

s
no

rm
 (

X
−

X*
)

1
2
4
8
16

Fig. 4. Convergence of Algorithm 2.4.

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Sweep

N
or

m
 (

x(
i)
−

x(
i)*

)

1
2
3
4
5
6
7
8
9

Fig. 5. Convergence of all nine columns using Algorithm 2.1.

0 2 4 6 8 10 12 14 16 18
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

N
or

m
 (

x(
i)
−

x(
i)*

)

1
2
3
4
5
6
7
8
9

Fig. 6. Convergence of all nine columns using Algorithm 2.2.

0 2 4 6 8 10 12 14 16 18
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

N
or

m
 (

x(
i)
−

x(
i)*

)

1
2
3
4
5
6
7
8
9

Fig. 7. Convergence of all nine columns using Algorithm 2.3.

1 2 3 4 5 6 7 8
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Sweep

N
or

m
 (

x(
i)
−

x(
i)*

)

1
2
3
4
5
6
7
8
9

Fig. 8. Convergence of all nine columns using Algorithm 2.4.

V 1012

