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ABSTRACT

Free probability provides tools and techniques for analyzing
the eigen-spectra of large Hermitian random matrices. These
stochastic eigen-analysis techniques have been invaluable in
providing insight into the structure of sample covariance ma-
trices. We briefly outline how these techniques can be used to
analytically predict the spectrum of large sample covariance
matrices. An eigen-inference application is briefly discussed.

1. INTRODUCTION

The search for structure characterizes the nature of research
in most areas of science and engineering. Mathematicians
look for structure in difficult problems – discovering or even
imposing a structure on the problem allows them to analyze
a previously intractable problem. Engineers look to use this
structure to gain insights into their algorithms and hopefully
exploit the structure to improve the design. This article de-
scribes how the operator algebraic invention of free probabil-
ity provides us with fresh insights into sample covariance ma-
trices. We briefly mention an application of these techniques
to the rank estimation problem that dramatically outperforms
solutions found in the literature.

2. FREE PROBABILITY AND RANDOM MATRICES

2.1. Classical probability

We begin with a viewpoint on the familiar “classical” prob-
ability. Suppose we are given a random variable a whose
probability distribution is a compactly supported probability
measure on R, which we denote by µa. The moments of the
random variable a, denoted by ϕ(an), are given by:

ϕ(an) =
∫

R

tndµa(t). (1)

More generally, if we are given the probability densities µa

and µb for independent random variables, a and b, respec-
tively we can compute the moments of a + b and ab from the
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moments of a and b. Specifically, our ability to do so is based
on the fact that:

ϕ(an1bm1 . . . ankbmk) = ϕ(an1+...nkbm1+...+mk) (2)

since a and b commute and are independent. In particular, the
distribution for a+b, when a and b are independent, is simply
the convolution of the measures µa and µb. A more familiar
way of restating this result is that the Fourier transform of the
probability measure of the sum of two independent random
variables is the product of the Fourier transforms of the indi-
vidual probability measures.

2.2. Free probability

We adopt a similar viewpoint on free probability using large
random matrices as an example of “free” random variables.
Throughout this paper, let AN be an N × N symmetric (or
Hermitian) random matrix with real eigenvalues. The prob-
ability measure on the set of its eigenvalues λ1, λ2, . . . , λN

(counted with multiplicities) is given by:

µAN =
1
N

N∑
i=1

δλi . (3)

We are interested in the limiting spectral measure µA as N →
∞ which, when compactly supported, is uniquely character-
ized by the moments computed as in (1). We refer to A as
an element of the “algebra” with probability measure µA and
moments ϕ(An).

Suppose we are now given two random matrices AN and
BN with limiting probability measures µA and µB , we would
like to compute the limiting probability measures for AN +
BN and ANBN (by which we really mean the self-adjoint
matrix formed as A1/2

N BNA1/2
N ) in terms of the moments of

µA and µB . It turns out that the appropriate structure, anal-
ogous to independence for “classical” random variables, that
we need to impose on AN and BN to be able to compute
these measures is “freeness”.

It is worth noting, that since A and B do not commute we
are operating in the realm of non-commutative algebra. Since
all possible products of A and B are allowed we have the
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“free” product, i.e., all words in A and B are allowed. (We
recall that this is precisely the definition of the free product
in algebra.) The theory of free probability allows us to com-
pute the moments of these products. The connection with
random matrices comes in because a pair of random matri-
ces AN and BN are asymptotically free, i.e., in the limit of
N → ∞ so long as at least one of AN or BN has what
amounts to eigenvectors that are uniformly distributed with
Haar measure. This result is stated more precisely in [1].

As was the case with independence for “classical” random
variables, “freeness” is the structure needed to be able to com-
pute mixed moments of the form ϕ(An1Bm1 . . .AnkBmk).
We note that the restriction that A and B do not commute so
that in general,

ϕ(An1Bm1 . . .AnkBmk) �= ϕ(An1+...nkBm1+...+mk).
(4)

is embedded into the definition of “freeness” when it was in-
vented by Voiculescu [1] in the context of his studies on op-
erator algebras. Though the condition for establishing “free-
ness” between a pair of random matrices, as described in [1],
is quite technical and appears abstract, it naturally arises in
many practical scenarios as detailed in Section 3.

2.3. Free Multiplicative Convolution

When AN and BN are asymptotically free, the (limiting)
spectral measure for random matrices of the form ANBN is
given by the free multiplicative convolution [1] of the proba-
bility measures µA and µB and is written as µAB = µA�µB.
The algorithm for computing µAB is given below.

Step 1: Compute the Cauchy transforms, GA(z) and GB(z)
for the probability measures µA and µB respectively. For a
probability measure µ on R, the Cauchy transform is defined
as:

G(z) =
∫

R

1
z − t

dµ(t). (5)

This is an analytic function in the upper complex half-plane.
We can recover the probabilitymeasure from the Cauchy trans-
form by the Stieltjes inversion theorem which says that:

dµ(t) = − 1
π

lim
ε→0

�G(t + iε), (6)

where the � denotes the imaginary part of a complex number.
Step 2: Compute the ψ-transforms, ψA(z) and ψB(z). Given
the Cauchy transform G(z), the ψ-transform is given by:

ψ(z) =
G(1/z)

z
− 1 (7)

Step 3: Compute the S-transforms, SA(z) and SB(z). The
relationship between the ψ-transform and the S-transform of
a random variable is given by:

S(z) =
1 + z

z
ψ〈−1〉(z) (8)

1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

P
ro

ba
bi

lit
y

Fig. 1. The limiting spectral measure of a SCM (solid line)
whose true measure is given in (16) for P = 0.4 and ρ = 2
compared with 1000 Monte-Carlo simulations for n = 100,
N = 1000.

where ψ〈−1〉(z) denotes the inverse under composition.
Step 4: The S-transform for the random variable AB is given
by:

SAB(z) = SA(z)SB(z). (9)

Step 5: Compute ψAB(z) from the relationship in (8).
Step 6: Compute the Cauchy transform, GAB(z) from the
relationship in (7).
Step 7: Compute the probabilitymeasure µAB using the Stielt-
jes inversion theorem in (6).

2.4. Free Additive Convolution

When AN and BN are asymptotically free, the (limiting)
probability measure for random matrices of the form AN +
BN is given by the free additive convolution of the probabil-
ity measures µA and µB and is written as µA+B = µA � µB .
A similar algorithm in terms of the so-called R-transform ex-
ists for computing µA+B from µA and µB . See [1] for more
details.

What we want to emphasize about the algorithms described
in Sections (2.3) and (2.4) is simply that the convolution op-
erators on the non-commutative algebra of large random ma-
trices exists and can be computed. Symbolic computational
tools are now available to perform these non-trivial compu-
tations efficiently (see [2] for examples). These tools enable
us to analyze the structure of sample covariance matrices and
design algorithms that take advantage of this structure.

3. SAMPLE COVARIANCE MATRICES

Let y be a n × 1 observation vector modeled as:

y = Ax + w, (10)
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Fig. 2. The limiting spectral measure of a SCM whose true
covariance matrix has measure (16) with P = 0.4 and ρ = 2,
for different values of c. Note that as c → 0, the blurring of
the sample eigenvalues reduces.

whereA is a n×L matrix, x is a L×1 “signal” vector andw is
a n×1 “noise vector”. This model appears frequently in many
signal processing applications [3]. If x and w are modeled
as independent Gaussian vectors with independent elements
having zero mean and unit variance (identity covariance), then
y is a multivariate Gaussian with zero mean and covariance:

R = E[yyH ] = AAH + I. (11)

In most practical signal processing applications, the true
covariancematrix is unknown. Instead, it is estimated from N
independent observations (“snapshots”) y1,y2, . . . ,yN as:

R̂ =
1
N

N∑
i=1

yiyH
i =

1
N

YnYH
n , (12)

where Yn = [y1,y2, . . . ,yN ] is referred to as the “data ma-
trix” and R̂ is the sample covariance matrix (SCM).

When n is fixed and N → ∞, it is well-known the sam-
ple covariance matrix converges to the true covariance matrix.
However, when both n, N → ∞ with n/N → c > 0, this
is no longer true. Such a scenario is very relevant in prac-
tice where stationarity constraints limit the amount of data
(N ) that can be used to form the SCM. Free probability is an
invaluable tool in such situations when attempting to under-
stand the structure of the resulting sample covariance matri-
ces.

We note first that the SCM can be rewritten as:

R̂ = R1/2W(c)R1/2. (13)

Here R is the true covariance matrix. The matrix W(c) =
(1/N)GGH is the Wishart matrix formed from an n × N
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Fig. 3. (Relative) Bias in estimating rank of true covariance
matrix: New algorithm (top) vs. classical algorithm (bottom)
for n = 200.

Gaussian random matrix with independent, identically dis-
tributed zero mean, unit variance elements. Once again, c
is defined as the limit n/N → c > 0 as n, N → ∞.

Since the Wishart matrix thus formed has eigenvectors
that are uniformly distributed with Haar measure, the matri-
ces R and W(c) are asymptotically free! Hence the limiting
probability measure µR̂ can be obtained using free multiplica-
tive convolution as:

µR̂ = µR � µW (14)

where µR is the limiting probability measure on the true co-
variance matrix R and µW is the Marčenko-Pastur density [4]
given by:

µW = max
(

0, 1 − 1
c

)
δ(x)

+

√
(x − b−)(b+ − x)

2πxc
I[ b−,b+] (15)

where b± = (1±√
c)2 and I[ b−,b+] equals 1 when b− ≤ x ≤

b+ and 0 otherwise.

4. APPLICATION TO SIGNAL PROCESSING

Let AAH in (10) have np of its eigenvalues of magnitude ρ
and n(1 − p) of its eigenvalues of magnitude 0 where p < 1.
This corresponds to A being an n×L matrix with L < n with
p = L/n so that L of its singular values are of magnitude

√
ρ

- the eigenvectors of A are unknown or random. Thus, as
given by (11), the limiting spectral measure of R is simply:

µR = p δ(x − ρ − 1) + (1 − p) δ(x − 1). (16)

Figure 1 compares the limiting spectral measure computed as
in (14) with Monte-Carlo simulations. Figure 2 plots the lim-
iting spectral measure as a function of c. Note that as c → 0,
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Fig. 4. Mean squared error in estimating ρ: New algorithm
(bottom) vs. classical algorithm (top) for n = 200.

we recover the measure in (16). The “blurring” in the eigen-
values of the SCM is because of insufficient sample support.
When c > 1 then we are operating in a “snapshot deficient”
scenario and the SCM is singular.

4.1. An eigen-inference algorithm

Though the free probability results are exact when n → ∞
the predictions are very accurate for n ≈ 10 as well. If the
example in (16) was a rank estimation algorithm where the
objective is to estimate p and ρ then Figure 2 intuitively con-
veys why classical rank estimation algorithms such as [5] do
not work as well as expected when there is insufficient data.
Our perspective is that since free multiplicative convolution
predicts the spectrum of the SCM that accurately we can use
free multiplicative deconvolution to infer the parameters of
the underlying covariance matrix model from a realization of
the SCM! We are able to do this rather simply by “moment
matching”. The first three moments of the SCM can be an-
alytically parameterized in terms of the unknown parameters
p, ρ and the known parameter c = n/N as:

ϕ(R̂) = 1 + pρ (17)

ϕ(R̂2) = pρ2 + c + 1 + 2 pρ c + 2 pρ + cp2ρ2 (18)

ϕ(R̂3) = 1 + 3 c + c2 + 3 ρ2p + 3 ρ3cp2 + 3 pρ

+ 9 pρ c + 6 p2ρ2c + 3 cρ2p + 3 pρ c2

+ 3 p2ρ2c2 + p3ρ3c2 + ρ3p

(19)

Given an n×N observation matrix Yn, we can compute esti-
mates of the first three moments as ϕ̂(R̂k) = 1

n tr[( 1
N YnY∗

n)k]
for k = 1, 2, 3. Since we know c = n/N , we can estimate ρ,
p by simply solving the non-linear system of equations:

(ρ̂, p̂) = arg min(ρ,p)>0‖
3∑

k=1

ϕ(R̂k) − ϕ̂(R̂k)‖2 (20)

As n, N → ∞we expect the algorithm to perform well. It
also performs well for finite n. Figure 3 compares the rank es-
timation performance of the new algorithm with the classical
MDL/AIC based algorithm. The plots were generated over
2000 trials of an n = 200 system with ρ = 1, and p = 0.5
and different values of N . This implies that the true rank of
the system is n p = 100. Define the bias of the rank estima-
tion algorithm to be the ratio of the estimated rank to the true
rank. Hence 0 dB corresponds to zero rank estimation error
and so on. As Figure 3 indicates, the new algorithm dramati-
cally outperforms the classical algorithm and remains, on the
average, within 1 dimension (i.e. < 0.2 dB) of the true rank
even when in the snapshot deficient scenario, i.e., N < n !
Additionally, the new rank estimation algorithm can be used
to estimate ρ and p. Figure 4 compares the mean-squared es-
timation error for ρ for the new and the MDL/AIC algorithm
respectively. Though the MDL/AIC estimation error is fairly
small, the new algorithm, once again, performs significantly
better, especially when n ≈ N . More general matrix models
are considered in [2].

5. CONCLUSIONS

Free probability, which has deep connections to the studies of
operator algebras, is an invaluable tool for characterizing the
eigen-spectrum of large sample covariance matrices (see [3]
for other application). As the algebraic structure captured by
free probability gets increasingly familiar to researchers, ad-
ditional applications that exploit this structure to design im-
proved algorithms (as in Section 4.1) are bound to emerge.
This is yet another instance of how the search for structure in
signal processing leads to new analytic insights, applications
and directions for future research.
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