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ABSTRACT

Under consideration is the large body of signal recovery
problems that can be formulated as the problem of min-
imizing the sum of two (not necessarily smooth) proper
lower semicontinuous convex functions in a real Hilbert
space. This generic problem is analyzed and a decompo-
sition method is proposed to solve it. The convergence of
the method, which is based on an extension of the Douglas-
Rachford algorithm for monotone operators splitting, is es-
tablished under general conditions. Various signal recov-
ery applications are discussed and numerical results are pro-
vided.

1. INTRODUCTION

A wide array of methodological approaches have been pro-
posed to solve signal recovery problems based on various
physical, statistical, and numerical considerations, as well
as on certain heuristic beliefs. Mathematically, though, sig-
nal recovery problems are most commonly posed as opti-
mization problems and typically solved on a case-by-case
basis by ad hoc algorithms. In [5], it was shown that a
number of apparently unrelated problems fitted the follow-
ing simple variational format in a real Hilbert space H.

Problem 1 Let f1 : H → ]−∞, +∞] and f2 : H → R

be two proper lower semicontinuous convex functions such
that f2 is differentiable on H with a Lipschitz continuous
gradient. The objective is to minimize f1 + f2 over H.

Problem 1 was shown to cover a variety of signal re-
covery formulations, including constrained least-squares
problems, multiresolution sparse regularization problems,
Fourier regularization problems, geometry/texture image
decomposition problems, hard-constrained inconsistent fea-
sibility problems, split feasibility problems, as well as cer-
tain maximum a posteriori problems [5]. Investigating this
generic formulation therefore made it possible to derive ex-
istence, uniqueness, characterization, and stability results in
a unified and standardized fashion. Moreover, a relaxed

forward-backward algorithm was proposed to solve Prob-
lem 1, which was shown to capture, extend, and provide a
simplified analysis for a variety of existing iterative meth-
ods, such as the projected Landweber method, the alternat-
ing projection method, or the iterative thresholding method
recently proposed in [6] (see [5] for details).

Despite its relatively broad scope, Problem 1 fails to
cover the important situations in which f2 is differentiable
with a non-Lipschitz gradient, or not finite everywhere, or
when it is not differentiable at all. The latter situation in-
cludes for instance the problem of minimizing the total vari-
ation of a signal over a convex set, the problem of mini-
mizing the sum of two set-distance functions, problems in
which both functions are maxima of convex functions, and
Tykhonov-like problems with L1 norms. The objectives of
the present paper are to extend Problem 1 by relaxing the as-
sumptions on f2 to a mere standard qualification condition,
to analyze the properties of the resulting nonsmooth convex
optimization problem, and to propose an iterative decompo-
sition method based on recent developments [3] on mono-
tone operator splitting. In Section 2, we define our notation
and provide the necessary mathematical background. The
recovery problem is formulated, analyzed, and illustrated in
Section 3. In Section 4, an algorithm is proposed to solve
it. Finally, a numerical application to wavelet-based signal
recovery is presented in Section 5.

2. NOTATION AND THEORETICAL TOOLS

Throughout this paper, H is a real Hilbert space with scalar
product 〈· | ·〉, norm ‖ · ‖, and distance d.

2.1. Convex analysis [9]

The indicator function of a subset C of H is

ιC : x �→

{
0, if x ∈ C;

+∞, if x /∈ C,
(1)

and the distance from a point x ∈ H to C is dC(x) =
inf‖x − C‖; if C is also closed and convex then, for every
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x ∈ H, there exists a unique point PCx ∈ C such that
‖x − PCx‖ = dC(x); PCx is the projection of x onto C.

The domain of a function f : H → ]−∞, +∞] is
dom f =

{
x ∈ H

∣∣ f(x) < +∞
}
. Γ0(H) is the class

of all lower semicontinuous convex functions from H to
]−∞, +∞] that are proper in the sense that their domain
is nonempty. Now let f ∈ Γ0(H). The conjugate of f is the
function f∗ ∈ Γ0(H) defined by

(∀u ∈ H) f∗(u) = sup
x∈H

〈x | u〉 − f(x) (2)

and f∗∗ = f . The subdifferential of f at x ∈ H is the set

∂f(x) =
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+f(x) ≤ f(y)
}
.

(3)
If f is Gâteaux differentiable at x with gradient∇f(x), then
∂f(x) = {∇f(x)}.

Lemma 2 Take f1 and f2 in Γ0(H) such that

⋃
γ>0

{
γ (x1 − x2)

∣∣ x1 ∈ dom f1, x2 ∈ domf2

}
is a closed vector subspace, (4)

and let x ∈ H. Then x minimizes f1 + f2 if and only if
0 ∈ ∂f1(x) + ∂f2(x).

Remark 3 Condition (4) is satisfied in each of the follow-
ing cases.

(i) f1 or f2 is finite.

(ii) dom f1∩int dom f2 �= ∅ or dom f2∩int dom f1 �= ∅.

(iii) dimH < +∞ and the relative interiors of dom f1 and
dom f2 have a nonempty intersection.

2.2. Proximity operators [5]

Let f ∈ Γ0(H). Then, for every x ∈ H, the function y �→
f(y) + ‖x − y‖2/2 admits a unique minimizer denoted by
proxfx. The proximity operator of f is

proxf : H → H : x �→ argmin
y∈H

f(y) +
1

2
‖x − y‖2. (5)

Lemma 4 Let f ∈ Γ0(H). Then

(i) (∀γ ∈ ]0, +∞[)(∀x ∈ H)

x = proxγfx + γproxf∗/γ(x/γ).

(ii) (∀x ∈ H)(∀y ∈ H) ‖proxfx − proxfy‖2

≤ ‖x − y‖2 − ‖proxf∗x − proxf∗y‖2.

(iii) If f is even, then proxf is odd.

Example 5 Set f = ιC , where C is a nonempty closed
convex subset of H. Then proxf = PC . Hence, proximity
operators generalize the notion of a projection operator.

Example 6 Let C be a nonempty closed convex subset of
H, let γ ∈ ]0, +∞[, and let x ∈ H. Then

proxγdC
x =

⎧⎨
⎩

x +
γ

dC(x)
(PCx − x), if dC(x) > γ;

PCx, if dC(x) ≤ γ.

Example 7 Let K be a (finite of infinite) subset of N, let
(ek)k∈K be an orthonormal basis of H, let (φk)k∈K be
functions in Γ0(R) such that

(∀k ∈ K) φk ≥ 0 and φk(0) = 0, (6)

let f : H → ]−∞, +∞] : x �→
∑

k∈K φk(〈x | ek〉), and
let x ∈ H. Then f ∈ Γ0(H) and proxfx =

∑
k∈K πkek,

where πk = proxφk
〈x | ek〉 is the unique solution to the

inclusion 〈x | ek〉 − πk ∈ ∂φk(πk).

Example 8 Let K be a (finite of infinite) subset of N, let
(ek)k∈K be an orthonormal basis of H, let (pk)k∈K be a se-
quence in [1, +∞[, let (ωk)k∈K be a sequence in ]0, +∞[,
let f : H → ]−∞, +∞] : x �→

∑
k∈K ωk| 〈x | ek〉 |

pk , and
let x ∈ H. Then proxfx =

∑
k∈K πkek where, for every

k ∈ K , πk is the unique solution to⎧⎪⎪⎨
⎪⎪⎩

ξk ∈ πk + ωk

(
sgn(πk) + (1 − | sgn(πk)|)[−1, 1]

)
,

if pk = 1;

ξk = pkωk|πk|
pk−1 sgn(πk) + πk, if pk > 1,

where ξk = 〈x | ek〉; in particular, πk is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn(ξk)max{|ξk| − ωk, 0}, if pk = 1;

ξk −
4ωk

3 · 21/3

(
(ηk + ξk)1/3 − (ηk − ξk)1/3

)
,

where ηk =
√

ξ2
k + 256ω3

k/729, if pk =
4

3
;

ξk +
9ω2

k sgn(ξk)

8

(
1 −

√
1+

16|ξk|

9ω2
k

)
, if pk =

3

2
;

ξk/(1 + 2ωk), if pk = 2.

3. PROBLEM FORMULATION

Problem 9 Let f1 and f2 be two functions in Γ0(H) which
satisfy (4). The objective is to

minimize
x∈H

f1(x) + f2(x). (7)
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Proposition 10 [2]

(i) Existence: Problem 9 possesses at least one solution
if lim‖x‖→+∞ f1(x) + f2(x) = +∞.

(ii) Uniqueness: Problem 9 possesses at most one solu-
tion if f1 + f2 is strictly convex, as is the case when
f1 or f2 is strictly convex.

(iii) Characterization: Let x ∈ H and γ ∈ ]0, +∞[, and
set rproxf = 2proxf − Id. Then the following state-
ments are equivalent.

(a) x solves Problem 9.

(b) x = proxγf2
y, where y = rproxγf1

rproxγf2
y.

The only restriction imposed in Problem 9 is the rel-
atively mild qualification condition (4). It therefore fol-
lows from Remark 3(i) that Problem 9 subsumes Problem 1.
Thus, the examples of signal recovery problems discussed
in [5] are covered by Problem 9. Here are concrete scenarios
which are covered by Problem 9, but not by Problem 1.

Example 11 H is either or R
N or H1(Ω), where Ω is an

open bounded domain of R
m, f1 is the L1 norm or the in-

dicator function of a nonempty closed convex set, and f2 is
the total variation. This follows from [4, Proposition 1].

Example 12 C1 and C2 are nonempty closed convex sets,
α > 0, 1 ≤ p < +∞, f1 = αdp

C1
, and f2 = dC2

. Prob-
lem 9 then extends the standard convex feasibility problem,
which corresponds to the case when C1 ∩ C2 �= ∅ [8].

Example 13 H = L2(Ω), where Ω is an open bounded
domain of R

m, and the observed data assume the form
z = Lx + w, where L is a bounded linear operator from
H to a Hilbert space G and w ∈ G is additive noise. More-
over, f1 : x �→ ‖Lx − z‖L1 and f2 = α‖ · ‖L1 , with α > 0.

4. ALGORITHM

Theorem 14 [2] Let γ ∈ ]0, +∞[, let (λn)n∈N be a se-
quence in ]0, 2[, and let (an)n∈N and (bn)n∈N be sequences
in H. Suppose that Problem 9 admits at least one solution,∑

n∈N
λn(2−λn) = +∞, and

∑
n∈N

λn(‖an‖+ ‖bn‖) <
+∞. Take x0 ∈ H and set, for every n ∈ N,⎧⎪⎪⎨
⎪⎪⎩

xn+
1

2

= proxγf2
xn + bn

xn+1 = xn+

λn

(
proxγf1

(
2xn+ 1

2

− xn

)
+ an − xn+ 1

2

)
.

(8)

Then (xn)n∈N converges weakly to some point y ∈ H and
x = proxγf2

y is a solution to Problem 9.

Fig. 1. Top: original image; middle: noisy image; bottom:
denoised image.
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In (8), the minimization problem (7) is decomposed into
two main steps: the current iterate is xn and the function f2

is first utilized to compute xn+
1

2

; the function f1 is then uti-
lized to produce the update xn+1. Note that the algorithm
allows for the inexact implementation of these two proximal
steps via the incorporation of errors bn and an. Moreover, a
variable relaxation parameter λn gives added flexibility. It is
important to note that the solution to Problem 9 is obtained
as the image under proxγf2

of the weak limit of (xn)n∈N

and that, in general, little is known about the asymptotic be-
havior of

(
proxγf2

xn

)
n∈N

unless proxγf2
is weakly con-

tinuous. This rather stringent assumption is notably satis-
fied when dimH < +∞ (by continuity of proxγf2

, see
Lemma 4(ii)); we can then formulate a sharper convergence
result, which is immediately relevant in numerical compu-
tations with discretized data.

Corollary 15 If dimH < +∞ in Theorem 14, then(
proxγf2

xn

)
n∈N

converges to a solution to Problem 9.

5. NUMERICAL RESULTS

We consider the denoising of an N ×N image, where N =
512. The underlying Hilbert space H is the Euclidean space
R

N2

. The original image shown in Fig. 1 (top) has been
corrupted by addition of i.i.d. zero-mean Laplacian noise.
The degraded image z = (zi,j)1≤i,j≤N can be seen in Fig. 1
(middle). The image-to-noise ratio is 5.95 dB.

The denoising is performed by solving Problem 9 where

f1(x) = f1

(
(xi,j)1≤i,j≤N

)
=

N∑
i=1

N∑
j=1

|xi,j − zi,j| (9)

and f2 is as in Example 8 with K = {1, . . . , N2}. In our
case, (ek)k∈K is chosen to be a two-dimensional separa-
ble orthonormal wavelet basis. More precisely, we use a
dyadic wavelet decomposition with symlet filters of length
8, carried out over 4 resolution levels. Moreover, pk takes
its values in {1, 4/3, 3/2, 2} and, for each subband, an
adapted value of (ωk, pk) is selected. Such a problem
formulation is closely related to a maximum a posteriori
approach using i.i.d. generalized Gaussian prior distribu-
tions for the wavelet coefficients (see [1] for more details
about this statistical model). A similar approach has been
adopted in [6] for restoration problems involving Gaussian
noise. Let us emphasize that, due to the nondifferentia-
bility of f1 and f2, neither the algorithms proposed in [6]
nor those of [5] are applicable. The denoised image ob-
tained by using Algorithm (8) is shown in Fig. 1 (bottom).
The relative mean square error with respect to the origi-
nal image is 14.15 dB. The normalized error ‖proxγf2

xn −

proxγf2
x∞‖

/
‖proxγf2

x∞‖ is plotted in Fig. 2.
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Fig. 2. Normalized error in dB: Proposed method with γ =
50 and λn ≡ 1 (solid line); comparison with the standard
subgradient method [7, Section 2.2] (dashed line).
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