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ABSTRACT

In Network Utility Maximization (NUM) problems, it is gen-

erally assumed that user utilities are uncoupled, i.e., each util-

ity depends only on local variables. Then the coupling in con-

straint functions among users sharing common resources can

be decoupled by standard methods such as dual decomposi-

tion. However, in problems where cooperation or competition

is modeled through the objective function, such as rate allo-

cation in clustered system and power control in interference

limited system, each utility may depend not only on its local

variables but also on the local variables of other utilities. Ap-

plications of this coupled utility model includewireless power

control and DSL spectrum management, where the utilities

are functions of the Signal-to-Interference Ratios (SIR) that

depend on the transmit powers of other users. We present a

systematic approach of consistency pricing to decouple NUM

problems with coupled utilities, obtaining distributed algo-

rithms that efficiently handle couplings in utilities with two

alternative timescales, as well as a method to reduce message

passing overhead in the case of interference-based coupling.

1. INTRODUCTION

An important approach to design a network system is by for-

mulating the design as the aggregate maximization of the util-

ities of all the nodes subject to physical and economic con-

straints in the network. This is referred to as Network Utility

Maximization (NUM). For example, consider a communica-

tion network with L links, each with a fixed capacity of cl

bits per transmission, and S sources or nodes, each trans-
mitting at a source rate of xs bits per transmission. Each

source s emits one flow, using a fixed set of links L(s) in
its path, and has a utility function Us(xs). The basic ver-
sion of NUM is the problem of maximizing the total utility∑

s Us(xs), over the source rates x, subject to linear flow

constraints
∑

s:l∈L(s) xs ≤ cl for all links l [1]:

maximize
x≥0

∑
s Us(xs)

subject to
∑

s:l∈L(s) xs ≤ cl, ∀l,
(1)
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where the variables are x. Note that the variables are cou-

pled through the linear flow constraints, but each utility is

a function only of local variables (uncoupled utilities). It is

assumed that the utilities Us are strictly concave functions.

Much research effort has been put in the design of distributed

algorithms for NUM [2]. The main ingredient to obtain dis-

tributed algorithms is the decomposition techniques, widely
used in optimization theory [2, 3] (see [3] for an overview of

distributed algorithms based on primal and dual decomposi-

tion approaches).

The majority of the utility problem formulations consid-

ered in the literature concern uncoupled utilities where the

local variables corresponding to one node do not directly dis-

turb the utilities of the other nodes. Systems with competi-

tion or cooperation, however, do not satisfy this assumption

and the utilities are indeed coupled. An example of coop-

eration model can be found in networks where nodes form

clusters and the utility obtained by each node depends on the

rate allocated to others within the same cluster. An exam-

ple of competition model is wireless power control and Dig-

ital Subscriber Line (DSL) spectrum management of copper

wires in a cable binder, where the utilities are functions of the

Signal-to-InterferenceRatios (SIR)s that are dependent on the

transmit powers of other users.

This paper’s focus on coupled utility is new even though
coupled constraints are standard in NUM. We present a sys-
tematic approach to deal with coupled utilities in a distributed

and efficient way by using proper combination of existing

distributed algorithms for uncoupled NUM problems and de-

composition techniques from optimization theory. The key

idea to deal with coupling in the objective function is to intro-

duce auxiliary variables and equality constraints, thus trans-

ferring the coupling in the objective function to coupling in

the constraints, which can be decoupled by dual decomposi-

tion and solved by introducing consistency pricing in addition
to the link congestion pricing inherent in the dual decompo-
sition approach of (1). Moreover, our cluster based coupled
NUM approach has implication on the timescale of network
protocol operations that use both consistency and link pric-

ing. Table 1 summarizes the key ideas behind coupled NUM.

Our main results are contained in the first column of Table

1 whereas the ideas in the second column are already well

known in basic NUM.
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Table 1. A Summary of coupled NUM with Implications on Network Design.
Competition or Cooperation Flow Constraints or Resource Sharing

(A) Problem Coupled objective Coupled constraint

(B) Approach Local copies of variables Dual decomposition

(C) Overhead Local consistency pricing Global congestion pricing

The paper is organized as follows. Section 2 contains the

main contribution of the paper: an efficient distributed algo-

rithm to solve general coupled NUM problems. Particularly,

two different decomposition techniques lead to different in-

terpretations in the design of network protocols. Section 3

presents an application of the proposed method: an optimal

power control scheme to minimize queueing delay in wire-

less networks using consistency pricing.

2. DECOMPOSITION APPROACH AND
DISTRIBUTED ALGORITHMS

2.1. Problem Formulation

Consider the basic NUM problem utilities which not only de-

pend on local variables but also on variables of other utilities.

The problem formulation is

maximize
{xk}

∑K

k=1 Uk

(
xk, {xl}l∈L(k)

)
subject to xk ∈ Xk ∀k,∑K

k=1 gk (xk) ≤ c

(2)

where the (strictly concave) utilities Uk depend on a local

vector variable xk and on variables of other utilities xl for

l ∈ L (k) (i.e., coupled utilities),L (k) is the set of nodes cou-
pled with the kth utility, the sets Xk are arbitrary convex sets

representing local constraints, and the coupling constraining

function
∑

k gk (xk) is not necessarily linear, but still con-
vex. Note that this model has two types of coupling: coupling

constraints (slightly more general than the linear constraints

in the basic NUM model in (1)) and coupled utilities (absent

in the basic NUM model).

Of particular interest is the case where the coupling be-

tween utilities is through an interference term that contains

an additive convex combination of the coupling variables:

Uk

(
xk, {xl}l∈L(k)

)
= Uk (xk, ik) (3)

where ik =
∑

l∈L(k) hkl (xl) and the hkl’s are convex func-

tions. Note that, by definition of interference, each utility
Uk (xk, ik) is decreasing in ik. This case allows a simpler

implementation as shown in the next subsection. The inter-

ference term has a physical implication in practice where net-

work nodes such as DSL modems already have the capability

to measure locally the total interference from other competing

network nodes.

2.2. Distributed Algorithm Based on Consistency Pricing

The key idea to tackle coupled utilities is to introduce auxil-

iary variables and additional equality constraints, thus trans-

ferring the coupling in the objective function to coupling in

the constraints, which can be decoupled by dual decompo-

sition and solved by introducing additional consistency pric-
ing. It is reasonable to assume that if two nodes have their
individual utilities dependent on each other’s local variables,

then there must be some communication channels in which

they can locally exchange pricing messages. It turns out that

the global link congestion price update of the canonical dis-

tributed algorithm is not affected by the local consistency price
updates, which can be conducted via these local communica-

tion channels among the nodes.

The key step is to introduce in problem (2) auxiliary vari-

ables xkl for the coupled arguments in the utility functions

and additional equality constraints to enforce consistency:

maximize
{xk},{xkl}

∑
k Uk

(
xk, {xkl}l∈L(k)

)
subject to xk ∈ Xk ∀k,∑

k gk (xk) ≤ c,
xkl = xl, ∀k, l ∈ L (k) ,

(4)

where xk are local variables at the kth node. Next, to obtain a
distributed algorithm, we take a dual decomposition approach

by relaxing all the coupling constraints in problem (4):

maximize
{xk},{xkl}

∑
k Uk

(
xk, {xkl}l∈L(k)

)
+ λT (c −

∑
k gk (xk))

+
∑

k,l∈L(k) γT
kl (xl − xkl)

subject to xk ∈ Xk ∀k,
xkl ∈ Xl ∀k, l ∈ L (k)

(5)

where λ are the link prices and the γkl’s are the consistency
prices. By exploiting the separability structure of the La-
grangian, the Lagrangian is separated into many subproblems

where maximization is done using local variables (the kth
subproblem uses only variables with the first subscript index
k). The optimal value of (5) for a given set of γkl’s and λ

defines the dual function g({γkl}, λ). The dual problem is
thus given by

minimize
{γ

kl
},λ

g({γkl} , λ) subject to λ ≥ 0. (6)
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It is worthwhile noting that (6) is equivalent to

minimize
λ

(
minimize

{γ
kl
}

g({γkl} , λ)

)
subject to λ ≥ 0.

(7)

Solving the dual function (either (6) or (7)) is equivalent to

solving the original problem.

In one approach, (6) is solved by simultaneously updat-

ing the prices (both the link prices and the consistency prices)

using a subgradient algorithm. In another approach through

formulation (7), however, the inner minimization is fully per-

formed (by repeatedly updating the set of γkl’s) for each up-

date of λ. This latter approach implies two timescales: a

fast timescale in which each cluster updates the corresponding

consistency prices and a slow timescale in which the network

updates the link prices; whereas the former approach has just

one timescale. The alternative of two timescales has an inter-

est from a practical perspective since consistency prices can

be exchanged very quickly over local communication chan-

nels only by nodes that are coupled together – a result at-

tributed to close physical proximity in practice. The dual

decomposition using (7) is termed cluster based NUM. Our
proposed solution is summarized next.

Problem (2), where the utilities Uk are strictly concave,

the sets Xk are arbitrary convex sets, and the constraining

functions gk are convex, can be optimally solved (for suffi-

ciently small stepsizes by the following distributed algorithm:

Algorithm: At each iteration t,

• Step 1: The link prices are updated as

λ(t + 1) =

[
λ(t) − α

(
c−

∑
k

gk (xk)

)]+

(8)

and are then broadcasted to the nodes. Note each com-

ponent of λ can be updated by each link distributively.

• Step 2: each kth node updates the consistency prices
(at a faster or same timescale as the update of λ(t)) as

γkl (t + 1) = γkl (t) − α (xl (t) − xkl (t)) , l ∈ L(k)
(9)

and then broadcast them to the coupled nodes within

the cluster, and

• Step 3: the kth node, for all k, locally solves the prob-
lem

maximize
xk,{xkl}r

Uk

(
xk, {xkl}l∈L(k)

)
− λT ∑

k gk (xk)+(∑
l:k∈L(l) γlk

)T

xk −
∑

l∈L(k) γT
klxkl

subject to xk ∈ Xk

xkl ∈ Xl ∀l ∈ L (k)
(10)

where {xkl}l∈L(k) are auxiliary local variables for the

kth node.

Network
Network Network

(a) (b) (c)

Fig. 1. Three network illustrations in terms of coupling: (a)
all uncoupled utilities; (b) partially coupled utilities within

clusters; (c) fully coupled utilities. (The dotted lines indicate

coupling and where the consistency prices are exchanged.)

It is possible to consider an asyncronous update in Step 2

that still converges to the optimal solution (c.f. [2]). It is im-

portant to note that the update of each γkl can be locally done

at the kth node with knowledge of the coupling variable xl

(through measurement or estimation) and its own local auxil-

iary variable xkl.

Summarizing, all the nodes advertise their local variables

xk (not the auxiliary ones xkl); each link j, for all j, updates
and signals the jth component of λ to all the links; each node
updates the corresponding γkl’s (with knowledge of the vari-

ables xk of the coupled nodes) and signals it to the coupled

nodes (such a message passing overhead within each cluster

is the price to pay to decouple the coupled utilities).

See Figure 1 for an illustration of three scenarios depend-

ing on the coupling: (a) uncoupled utilities (solved with a

standard dual-based algorithm); (b) partially coupled utilities

on a cluster basis (solved with the standard dual-based algo-

rithm plus an additional message passing within each cluster);

and (c) fully coupled utilities (solved with the standard dual-

based algorithm with additional message passing in the entire

network).

2.3. Interference-Dependent Utilities

Consider now an interesting special case in which the cou-

pling is through an interference term lumping together the

coupling variables as in (3). The (convex) problem with aux-

iliary variables ik for the coupled variables is

maximize
{xk},{ik}

∑
k Uk (xk, ik)

subject to xk ∈ Xk ∀k,∑
k gk (xk) ≤ c,

ik ≥
∑

l∈L(k) hkl (xl) ∀k

(11)

where the interference inequality constraint is satisfied with

equality at an optimal point since utilities are decreasing in

the interference term. The only modification to our earlier

algorithm is that the update of the consistency prices in (9) is
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replaced by:

γk (t + 1) =

⎡
⎣γk (t) − α

⎛
⎝ik −

∑
l∈L(k)

hkl (xl)

⎞
⎠

⎤
⎦

+

(12)

which can be done at the kth node with knowledge of the
local variables and of the linear combination of the coupling

variables from other nodes.

By leveraging the structure of the interference term, only

one consistency price is needed for each interference term

(which may contain many coupled variables), substantially

reducing the amount of signaling. Indeed, message passing

overhead, measured by the number of consistency prices to

update in (9) and (12), is of the order O(N 2) and O(N), re-
spectively, where N is the number of nodes in a cluster.

3. OPTIMAL POWER CONTROL IN BROADCAST
CHANNELS USING CONSISTENCY PRICING

In this section, we illustrate an application of consistency pric-

ing to power control scheme in a multiuser wireless network

with Gaussian broadcast channel which corresponds to the

case of fully coupled utilities in Figure 1(c). The network

has L logical links (equivalently, transceiver pairs). Transmit
powers for each user are denoted by p1, . . . , pL. The Signal-

to-Interference Ratio (SIR) for the receiver on logical link l
is

SIRl(p) =
plGll∑L

j �=l pjGlj + nl

, (13)

whereGlj are the channel gains from transmitter j to receiver
l, and nl is the additive white Gaussian noise for receiver l.
Attainable data rates at each logical link is given (ignoring

constants) by cl(p) = log(1+SIRl(p)) bits per transmission.
It is desired to minimize the total queueing delay in the wire-

less network which assumes that flows arrive according to

some statistical assumption and are served in a single buffer

at each logical link in the wireless network with a total power

constraint PT . Formally, we have

minimize
t,p≥0

∑
l

tl

cl(p)−tl

subject to tl ≤ cl(p), ∀l,
pl ≤ pmax, ∀l,∑

l pl ≤ PT .

(14)

where the objective function is a sum of queueing delays at

each link. It is well known that the set of achievable rates

tl, ∀l, in the Gaussian broadcast channel and the power vector
p are not jointly convex in the capacity region, i.e., the set of

constraints in (14) is not convex [4]. Furthermore, the objec-

tive function is a nonconvex function of t and p, and is tightly

coupled in p.

However, with a suitable change of variables, the above

problem can be transformed into a convex optimization prob-

lem. Specifically, by a log transformation of variables t̃l =

log tl and p̃l = log pl, ∀l, the capacity region of the Gaussian
broadcast channel is jointly convex in the transformed vari-

ables t̃ and p̃1. In our transformation, we need to ensure both
convexity (for global optimality) and decomposition (for dis-

tributed solution). Introducing an additional variable ν̃ and
transferring the objective function to the constraints, (14) is

transformed into the following convex optimization.

minimize
ν̃,̃t,p̃≥0

∑
l eν̃l

subject to (et̃l−ν̃l + et̃l)/cl(p̃) ≤ 1, ∀l,

et̃l/cl(p̃) ≤ 1, ∀l,
ep̃l ≤ pmax, ∀l,

∑
l e

p̃l ≤ PT .

(15)

We can resolve the coupling in the total power constraint

in (15) using the primal or dual decomposition approaches in

[3]. If we use dual decomposition, at Step 1 in our general

algorithm, we have

λ (t + 1) =
[
λ (t) − α

(
PT −

∑
l e

p̃l

)]+
.

The consistency pricing algorithm is used to resolve the cou-

pling in p̃ in the first two constraints of (15)2. Specifically,
auxiliary variables pR

lj and additional consistency constraints

pR
lj = Gljpj, ∀l, j are introduced in (15) which, after a log

transformation, gives p̃R
lj = G̃lj + p̃j , ∀l, j. At Step 2 in our

general algorithm, the lth logical link now estimates the ef-
fective received power from the jth interfering link, pest

j (t)
(Ideal estimation yields pest

j (t) = Gljpj, ∀j), and updates the
dual variable of the jth consistency constraint by

γlj (t + 1) = γlj (t) + α
(
p̃R

lj(t) − log pest
j (t)

)
.
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