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ABSTRACT

This paper describes the frequency-domain blind source separa-
tion (BSS) of convolutively mixed acoustic signals using indepen-
dent component analysis (ICA). The most critical issue related to
frequency domain BSS is the permutation problem. This paper
presents two methods for solving this problem. Both methods are
based on the clustering of information derived from a separation
matrix obtained by ICA. The first method is based on direction of
arrival (DOA) clustering. This approach is intuitive and easy to
understand. The second method is based on normalized basis vec-
tor clustering. This method is less intuitive than the DOA based
method, but it has several advantages. First, it does not need sen-
sor array geometry information. Secondly, it can fully utilize the
information contained in the separation matrix, since the cluster-
ing is performed in high-dimensional space. Experimental results
show that our methods realize BSS in various situations such as
the separation of many speech signals located in a 3-dimensional
space, and the extraction of primary sound sources surrounded by
many background interferences.

1. INTRODUCTION

Blind source separation (BSS) [1] is a technique for estimating
individual source signals from their mixtures observed by sen-
sors. The BSS of audio signals has a wide range of applications
including speech enhancement. Independent component analysis
(ICA) [2] is one of the main statistical methods used for BSS and
it achieves separation by using the non-Gaussianity and indepen-
dence of source signals. In most realistic applications, the number
of source signals is large, and the signals are mixed in a convolu-
tive manner with reverberations. This makes the problem difficult.

There are two major approaches to solving the convolutive
BSS problem. The first is the time domain approach, where ICA
is applied directly to the convolutive mixture model [3, 4, 5]. This
approach achieves good separation if the calculation successfully
converges to a correct solution, however, it incurs considerable
computational cost. Thus it is difficult to obtain a solution in
a practical time especially when the number of source signals is
large.

The other approach is frequency domain BSS, where ICA is
applied to multiple instantaneous mixtures in the frequency do-
main [6, 7, 8, 9]. This approach takes much less computation time
than time domain BSS. However, it poses another problem in that
we need to align the output signal order for every frequency bin
so that a separated signal in the time domain contains frequency
components from one source signal. This problem is known as the
permutation problem. We have been studying frequency domain
BSS [10, 11, 12, 13, 14, 15], and have developed effective meth-
ods for solving the permutation problem. Our methods realize BSS
in various situations such as the separation of many speech signals
located in a 3-dimensional space, and the extraction of primary
sound sources surrounded by many background interferences. In
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this paper, we describe key techniques and demonstrate the effec-
tiveness of our methods experimentally.

2. FREQUENCY DOMAIN BSS

When N source signals are s1(t), ..., sN (t) and the signals ob-
served by M sensors are x1(t), ..., xM (t), the mixing model can
be described by the following equation:

xj(t) =
∑N

i=1

∑
l hji(l)si(t − l), (1)

where hji(l) is the impulse response from source i to sensor j.
Figure 1 shows the flow of frequency domain BSS. First, time-

domain observed signals xj(t) sampled at frequency fs are con-
verted into frequency-domain time-series signals xj(f, τ) with an
L-point short-time Fourier transform (STFT):

xj(f, τ) =
∑L/2−1

r=−L/2 xj(τ + r) win(r) e−j2πfr, (2)

where f ∈ {0, 1
L

fs, . . . , L−1
L

fs} is a frequency, win(r) is a win-
dow that tapers smoothly to zero at each end, and τ is a new index
representing time. The convolutive mixtures (1) can be approxi-
mated as instantaneous mixtures at each frequency:

xj(f, τ) ≈ ∑N
k=1 hjk(f)sk(f, τ), (3)

where hjk(f) is the frequency response from source k to sensor
j, and sk(f, τ) is a frequency-domain time-series signal of sk(t)
obtained by an operation similar to (2). A vector notation of (3) is
given as:

x(f, τ) =
∑N

k=1 hk(f)sk(f, τ), (4)
where x = [x1, . . . , xM ]T is an observation vector and hk =
[h1k, . . . , hMk]T is the vector of the frequency responses from
source sk to all sensors. The first step of the BSS is to obtain fre-
quency components hk(f)sk(f, τ) for each source signal k from
the observation vector x(f, τ). To extract the components, we ap-
ply ICA to the observation vectors, and we have:

y(f, τ) = W(f)x(f, τ), (5)
where W(f) is an N × M separation matrix and y(f, τ) =
[y1(f, τ), . . . , yM (f, τ)]T is a vector of independent components.
When the number of source signals N is known and N < M , we
can apply Principle Component Analysis (PCA) to the observation
vector to reduce its dimensions, otherwise we assume N = M and
W(f) is a square matrix. The ICA algorithm for complex-valued
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signals is detailed in [10].
ICA maximizes the non-Gaussianity of the output signals

yi(f, τ), therefore, when the source signals are non-Gaussian and
mutually independent, the separation is achieved in each frequency
bin. However, the ICA solution suffers permutation and scaling
ambiguities. Before constructing output signals in the time do-
main, we have to align the permutation so that each channel con-
tains frequency components from one source signal. Section 3
details methods for solving the permutation problem. With regard
to the scaling problem, there is a simple and reasonable solution
that uses one element of the basis vector obtained by (7), which is
given in the next section:

yi(f, τ) ← aJi(f)yi(f, τ), (6)
where J is a reference sensor. This solution is equivalent to the
minimal distortion principle (MDP) [3] or the projection back
method [7]. By using this solution, the output signal yi becomes
an estimation of the reverberant version of source si measured at
sensor J . After the operations for solving the permutation and
scaling problems, time-domain output signals yi(t) are obtained
by using an inverse STFT (ISTFT) :

yi(τ + r) =
1

L·win(r)

∑
f∈{0, 1

L
fs, ..., L−1

L
fs}

yi(f, τ) ej 2πfr.

3. SOLVING PERMUTATION PROBLEM

3.1. Basis vector

The inverse (or pseudo inverse when N < M ) of the separation
matrix W provides useful information for solving the permutation
problem. For simplicity, we assume N = M in the following
discussions. Let a1, ..., aM be the column vectors of W−1:

[a1, · · · ,aM ]
�
= W−1, ai = [a1i, . . . , aMi]

T . (7)
We call a1, ..., aM basis vectors, because the observation vector
x(f, τ) is represented by a linear combination of these vectors:

x(f, τ) =
∑M

i=1 ai(f)yi(f, τ), (8)

which is given by multiplying both sides of (5) by W−1. This
equation is very important for frequency domain BSS. If a sepa-
ration matrix W(f) is successfully calculated by ICA, there exist
i and k such that ai(f)yi(f, τ) corresponds to hk(f)sk(f, τ) in
(4). Determining the correspondences between i and k for all f is
equivalent to solving the permutation problem.

The following subsections describe two approaches for solv-
ing the permutation problem. Both methods utilize information
derived from the basis vectors. The first method is based on the
clustering of estimated directions of arrival (DOA) or source loca-
tions (Fig. 2). This approach is intuitive and easy to understand,
however it needs the assumptions that the number of source sig-
nals N is known and N ≤ M . The second method is based on
the clustering of normalized basis vectors (Fig. 3). This method is
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designed to work even when N is unknown and N > M . In such
a case, we extract M primary signals instead of separating all N
signals.

3.2. Clustering estimated DOA

With a far-field model, a frequency response from source k to sen-
sor j can be approximated as:

hjk(f) ≈ ej2πfc−1pT
j qk , (9)

where c is the wave propagation speed, pj is the location of sensor
j, and qk represents a unit vector that points to the direction of
source k. By taking the ratio for a sensor pair j and j′ with this
model, we have

hjk(f)/hj′k(f) ≈ ej2πfc−1(pj−pj′ )
T qk (10)

= ej2πfc−1‖pj−pj′‖ cos θ
jj′
k , (11)

where θjj′
k is the direction of source k relative to the sensor pair j

and j′. In this way, DOA has two kinds of representations; the
absolute DOA qk, which is determined in a coordinate system
and the relative DOA θjj′

k which is determined relative to a mi-
crophone axis. When we adopt a near-field model, that includes
the attenuation of the wave, we can estimate range information in
addition to DOA. The details are given in [12, 13].

When the ICA solution is successfully calculated, and assum-
ing correspondences between terms in (4) and (8), the ratio of ele-
ments aji(f) and aj′i(f) in a basis vector ai(f) can be expressed
as follows:

aji(f)

aj′i(f)
=

ajiyi

aj′iyi
≈ hjksk

hj′ksk
=

hjk(f)

hj′k(f)
. (12)

Here, indexes i and k may be different. This represents the permu-
tation ambiguity. By using the arguments of (12) and (11), we can
estimate a relative DOA:

θ̂jj′
i (f) = arccos

arg[aji(f)/aj′i(f)]

2πfc−1||pj − pj′ || . (13)

Absolute DOA qk is estimated by using multiple sensor pairs.
By using the arguments of (12) and (10), we have:

2πfc−1(pj−pj′)
T qk ≈ arg[aji(f)/aj′i(f)]. (14)

When we consider (14) for u sensor pairs (j1, j
′
1), . . . , (ju, j′u),

we have a simultaneous equation

2πfc−1 Vqk = ri(f), (15)
where

V
�
= [pj1−pj′1 , . . . , pju−pj′u ]T,

ri(f)
�
= [ arg(aj1i/aj′1i), . . . , arg(ajui/aj′ui) ]T .

In a practical situation, (15) seldom has the exact solution because
of an estimation error in ri. Therefore, we use the Moore-Penrose

pseudo-inverse V+ �
= (VT V)−1VT , and we obtain an approxi-

mately optimal solution:

q̂i(f) =
V+ri(f)

2πfc−1
, q̂i(f) ← q̂i(f)

||q̂i(f)|| . (16)

We can group separated frequency components yi(f, τ) according
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to the clustering result of their estimated DOAs. Section 4.1 shows
experimental results obtained using this method.

3.3. Clustering normalized basis vector

This section describes a method for solving the permutation prob-
lem by clustering normalized basis vectors āi(f), which are cal-
culated by eliminating frequency dependency from basis vectors
ai(f). This method is less intuitive than the DOA based method
described above, but it has several advantages. First, it does not
need sensor array geometry information p1, ...,pM . Secondly,
it can fully utilize the information contained in the basis vectors,
since clustering is performed in M -dimensional complex-valued
space CM , while the DOA based method uses the information re-
duced onto a sphere S2 in 3-dimensional space.

Elements of the normalized basis vector āi(f) =
[ā1i(f), . . . , āMi(f)]T are calculated by the following formula:

āji(f) = |aji(f)| exp

[
j
arg[aji(f)/aJi(f)]

4fc−1dmax

]
, (17)

where J is the index of a reference sensor, and dmax is the
maximum distance between the sensor J and a sensor ∀j ∈
{1, . . . , M}. This equation eliminates the frequency dependency
in ai(f). Then, we normalize the vector length to 1 to eliminate
the scaling ambiguity.

āi(f) ← āi(f) / ||āi(f)|| (18)
According to these operations, the normalized basis vector āi(f)
becomes independent of the frequency f , but it depends on
the source direction qk and the (unknown) sensor locations
p1, . . . ,pM . Actually, we can confirm this by using a far-field
model (9) and equations (14), (17) and (18)

āji(f) ≈ 1√
M

exp

[
j

π

2

(pj − pJ)T qk

dmax

]
.

When we use a near-field model, we can also prove that āji(f) is
independent of the frequency f [14].

After normalizing all the basis vectors, we employ a cluster-
ing algorithm to find clusters C1, . . . , CM formed by normalized
vectors āi(f). The centroid ck of a cluster Ck is calculated by

ck ← ∑
ā∈Ck

ā/|Ck|, ck ← ck/||ck||, (19)

where |Ck| is the number of vectors in Ck. The clustering criterion
is to minimize the total sum J of the squared distances between
cluster members and their centroid

J =
∑M

k=1 Jk, Jk =
∑

ā∈Ck
||ā − ck||2. (20)

This minimization can be achieved by using an ordinary clustering
method such as the k-means algorithm [16].

Then, to align the permutation ambiguities, we renumber the
indexes of the basis vectors by

ak(f) ← aΠf (k)(f), (21)

where Πf : {1, . . . , M} → {1, . . . , M} is a one-to-one mapping
decided for each frequency f by

Πf = argminΠ

∑M
k=1 ||āΠ(k)(f) − ck||2. (22)

We also renumber independent components y1(f, τ), . . . ,
yM (f, τ) accordingly.

Section 4.2 shows the experimental BSS results obtained us-
ing this method with multiple target signals surrounded by many
background interferences.

4. EXPERIMENTS

4.1. Separation of six 3-D located sources

We carried out experiments in an ordinary office and evaluated the
Signal to Interference Ratio (SIR) performance. We used eight
microphones located at the vertex of a 4 cm cube and six signals
distributed in a three-dimensional space (Fig. 5). We calculated the

Fig. 5. Six 3-D located source signals and eight microphones lo-
cated at the vertex of a 4 cm cube

X
Y

Z

Fig. 6. Clustering result of estimated DOAs

Table 1. Experimental results (dB)
SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 ave.

Input SIR −11.6 −9.0 −9.0 −6.6 −6.9 −2.5 −7.6
Output SIR 7.6 12.2 16.4 14.4 13.6 13.7 13.0

improvement 19.2 21.2 25.4 21.0 20.5 16.2 20.6

separation filter by using live recorded mixtures, and evaluated the
SIRs by using individually activated source signals. The separa-
tion system W was calculated by using a complex-valued version
of FastICA [17] and further improved by using InfoMax [18] com-
bined with the natural gradient whose nonlinear function is based
on the polar coordinate [10]. We applied the k-means algorithm to
the estimated DOAs obtained by (16). Figure 6 shows a clustering
result. As reverberations disrupt the presupposed far-field model,
the estimated DOAs are scattering around the centroids. Never-
theless, this information is sufficient for solving the permutation
problem. The results of SIR evaluation are shown in Table 1. We
obtained good separation in spite of the very low input SIR. The
average SIR improvement was more than 20 dB.

4.2. Extraction of primary sources in ambient noise

Next we designed experiments to evaluate the effectiveness of
the basis vector clustering. We measured impulse responses
hjk(l) under the conditions shown in Fig. 7. We used four 3-
dimensionally arranged microphones (M = 4), and nine loud-
speakers. Three of the loudspeakers were located near the mi-
crophones and used as primary target signals to be separated.
The remaining six loudspeakers were located far from the micro-
phones to provide ambient interferences. These speakers simu-
late a cocktail party situation. Mixtures were made at the micro-
phones by convolving the impulse responses and 6-second English
and Japanese speeches sampled at 8 kHz. The system knew only
the maximum distance (4 cm) between the reference microphone
(Mic. 1) and the others.

As the number of microphones was M = 4, we calculated a
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4 × 4 separation matrix W(f) for each frequency bin. The per-
mutation was aligned according to the information obtained by the
normalized basis vector clustering described in Sec. 3.3. Figures 8
and 9 show the clustering results. There are four clusters corre-
sponding to four output channels. The normalized basis vectors
are M -dimensional complex-valued, and so it is difficult to visual-
ize the clustering results. These figures show the squared distance
between the cluster members and each corresponding centroid.

The variances of the clusters Jk/|Ck| can be used to distin-
guish primary target signals and background noises. We can infer
that clusters with small variances correspond to target signals near
the microphones. Figure 8 shows the results we obtained when we
activated only one of the three target speakers. We can see that one
cluster has a small variance and it corresponds to a primary source
signal. Figure 9 shows the results when all three target speakers
were activated. There are three clusters with small variances that
correspond to primary sources. In this way, we can estimate the
number of primary sounds.

We evaluated the separation performance with three targets
and six background interferences. Experiments were conducted
with ten combinations of nine speeches. Table 2 shows the average
SIR. Even under such difficult conditions, our system succeeded in
enhancing and separating the target sources. The separation per-
formance can be improved further by employing post-processing
using time-frequency masking [14].

Table 2. Average SIR (dB)
Target position a120 b120 c170

InputSIRi −3.9 −3.6 −5.9
OutputSIRi 8.6 10.0 8.6

improvement 12.5 13.6 14.5

5. CONCLUSION

We have described frequency domain BSS for a large number of
source signals and demonstrated its effectiveness in two different
situations. The key technique is a method for solving the permuta-
tion problem. We can align the permutation efficiently according
to the clustering results of estimated DOAs or normalized basis
vectors. The frequency normalization method described in this pa-
per can be used for underdetermined (N > M ) BSS, which does
not use ICA [15].
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