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ABSTRACT

Speech signal extraction is becoming more and more important
as evidently displayed by its numerous applications such as mo-
bile phones, conference equipments and surveillance. This paper
presents a blind method to enhance a speech source of interest in
noisy environments. The proposed technique consists of the prin-
cipal component analysis (PCA) and the independent component
analysis (ICA) to extract the speech signal. In an effort to overcome
the small phase resolution due to the constraint on the inter-element
distance, a non-uniform spacing PCA-ICA algorithm is suggested.
By utilizing a different inter-element distance processing on each
pair of microphones in a multistage fashion, a better separation is
achieved. Results show better separation performance for the pro-
posed method compared to the uniformly spaced microphone array.

1. INTRODUCTION

Speech signal extraction as the name implies, aims to extract speech
signal (of interest) in adverse environments. Generally speaking,
there are largely two approaches to perform the extraction or en-
hancement process, i.e., single channel and multi-channel tech-
niques. Whilst single channel approach is simpler and “hardware
appealing” compared to its multi-channel counterpart, there are how-
ever fundamental limitations as to how much it can really achieve,
particularly in the presence of non-stationary noise. Multi-channel
approach on the other hand, offers spatial diversity, which can be
exploited to spatially pass or reject sources coming from a specific
direction in space [1, 2]. However, most beamforming based ap-
proaches require information about array geometry and source lo-
calization.

Of late, blind signal separation (BSS) has emerged as an efficient
tool to perform speech signal extraction [3, 4, 5]. Strictly, BSS as the
name implies, is a technique for estimating original sources from ob-
served mixed signals without information about the array geometry
and source localization [6]. It is precisely this “blindness” to infor-
mation needed by conventional beamformers, which makes BSS a
very appealing tool to perform speech extraction. For instance, the
uncoupling of geometric model results in the uncoupling of the dis-
astrous steering vector errors i.e., no geometry model mismatch. In
[7], it was shown that BSS is in fact similar to beamforming. This is
because BSS forms spatial nulls to suppress sources. As pointed out
in [8], spatial nulls can be best formed if phase differences are well
exploited. This means that appropriate inter-element spacing should
be set for certain frequency range.
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Fig. 1. The structure of the proposed combined PCA-ICA algorithm.

In an effort to overcome the poor phase resolution in the low fre-
quency range, a non-uniform spacing principal component analysis -
independent component analysis (PCA-ICA) algorithm is suggested.
By utilizing a different inter-element distance processing on each
pair of microphones in a multistage fashion, a better separation is
achieved. The proposed method does not require bandpass filtering
to split the observations into several subsystems or frequency groups.
Instead, a simple sequential or multistage processing method is pro-
posed, i.e., a two-stage BSS. The first stage involves separation in
pairs of microphones with different spacing. As such, separation at
lower frequency range and upper frequency range will benefit from
a wider spacing and a smaller spacing, respectively. To recombine,
the kurtosis selection strategy [3] and a second separation stage are
used.

In Section 2, the PCA-ICA algorithm and its extension to an on-
line system are described. Additionally, the application of BSS as
a signal extraction tool is reviewed and explained. Following that,
the pair-wise multi-resolution separation scheme is included, along
with a comparison of the non-uniform spacing and uniform spacing
array. Results show better noise suppression is achieved by using the
non-uniform spacing compared to the uniform array.

2. PCA-ICA ALGORITHM

2.1. Introduction

Figure 1 shows the block diagram of the proposed L-element PCA-
ICA algorithm. The frequency domain based separation algorithm
consists of two main parts. First, it decorrelates the data through
PCA and subsequently separates the data via ICA. The PCA and ICA
algorithms complement one another because if only the PCA is used,
no separation can be accomplished, since the PCA only decorrelates
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the data (uncorrelated does not mean independence). Moreover, if
ICA is applied alone, the problem becomes difficult for the ICA to
solve. In other words, PCA first reduces the dimension of the prob-
lem and this gives a good initial conditions for ICA to perform the
separation [9].

2.2. Principal Component Analysis (PCA)

In this paper, we suggest a recursive PCA to perform the decorrela-
tion [10, 11]. The cost function, E(ω, n) at instant, n and frequency,
ω can then be written as

E(ω, n) = H(ω, n)Rx(ω, n)HH(ω, n) − Λs(ω, n), (6)

where H(ω, n) is the decorrelation matrix and Rx(ω, n) is the co-
variance matrix of the received observations. The diagonal matrix,
Λs is the sources’ power and the subscript (·)H denotes the Her-
mitian transposition. The objective is find H(ω, n) such that the
following is minimized

Ĥ(ω, n) = arg min
H(ω,n)

‖ E(ω, n) ‖2
F , (7)

where ‖ · ‖2
F denotes the squared Frobenius norm. To simplify

derivation, we assume that the field is homogeneous, the matrix
H(ω, n) is full rank and that all sources have the same power, i.e.,
Λs(ω, n) = S(ω, n)I, where S(ω, n) is the source power constant
and I is an L × L identity matrix. Thus, the solution to the problem
in (7) can be written as

H(ω, n) =
�
S(ω, n)R−1

x (ω, n)
�1/2

. (8)

The covariance matrix, Rx(ω, n) can be estimated from the current
observation vector as

Rx(ω, n) = αRx(ω, n − 1) + (1 − α)X(ω, n)XH(ω, n), (9)

where X(ω, n) = [X1(ω, n), · · · , XL(ω, n)]T is the observation
vector at instant n and frequency, ω. Also, the superscript (·)T repre-
sents the transposition operator and α is the forgetting factor, which
controls the memory of the update. By setting the source power con-
stant to unity and by using (9) and matrix inversion lemma [10], (8)
can be conveniently expressed as (5).

From (5), it is clear that the recursive based PCA is a “sample-by-
sample” algorithm, which is suitable for a real-time implementation.
It is interesting to note that only the decorrelation matrix at the pre-
vious instant, H(ω, n − 1) and current observation vector, X(ω, n)
are needed. The output of the PCA is then given as

Y(ω, n) = H(ω, n)X(ω, n), (10)

where Y(ω, n) = [Y1(ω, n), · · · , YL(ω, n)]T . However, since the
separation is performed independently for each frequency bin, there
will be permutation indeterminacy [3, 4]. Therefore, the permuta-
tion needs to be aligned in each frequency bin correctly such that the
reconstructed fullband signal contains frequency components only
from the same source signal. One solution to solve this problem
is shown in [12]. They propose the enforcement of a constraint on
the weight matrix, which links the otherwise independent frequen-
cies and hence solves the permutation problem. This is performed

Learn
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Fig. 2. The block based ICA algorithm, where T is the block delay.

by making a DFT-IDFT cascade of the weight matrix [12] and by
enforcing a time domain constraint according to

Ht(τ) = 0 (11)

where τ > Q � M with Ht(τ) denoting the IDFT of H(ω, n), Q

is the time domain constraint on the filter size and M is the number
of frequency bin.

2.3. Independent Component Analysis (ICA)

In keeping with the on-line nature of the PCA algorithm explained
in Section 2.2, we propose a block based ICA algorithm. Depending
on the block size, T , the block based algorithm introduces a block
delay of T + 1 samples. A simple illustration is shown in Figure X.
From the figure, the separation matrix, W(ω, n) is actually learnt by
using the block of data at instant, n − T up to instant, n, i.e., T + 1
samples, [Y(ω, n − T ) : Y(ω, n)]. Due to the block delay, the
separation matrix is only updated every T + 1 samples. This means
that the block of data at instant, n−T to instant, n is separated with
W(ω, n − T ) (see Figure 2).

Since the algorithm is applied in frequency-domain, any instanta-
neous ICA-algorithm can be used [9, 13]. In this paper, the informa-
tion maximization approach with a natural gradient is applied. The
separation matrix, W(ω, n) is given as [13]

W
(k+1)(ω, n) = W

(k)(ω, n)

+µ
�
I − ϕ[U(ω, n)]UH(ω, n)

�
W

(k)(ω, n),

(12)
where U(ω, n) = W

(k)(ω, n)Y(ω, n), µ is the step-size parame-
ter, the index k represents the epoch training and ϕ is the non-linear
function. The nonlinear function is given as [8]

ϕ [U(ω, n)] = tanh [β · |U(ω, n)|] · ej{arg[U(ω,n)]}
, (13)

where β is a regulator constant and | · | denotes the absolute value
operator. The output can then be written as

Z(ω, n) = W(ω, n − T )Y(ω, n). (14)

3. SPEECH SIGNAL EXTRACTION

Speech signal extraction is a closely related area to speech enhance-
ment. The two areas differ only in their terminologies, but share the
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Fig. 3. Configuration of the separation process with pairs of non-
uniform array. Note that the three-element array is uniformly spaced.

commonality of extracting or enhancing the signal of interest. Like-
wise, BSS can be mildly viewed as a signal extraction/enhancement
process. The major difference is that conventional BSS yields L out-
puts as opposed to a single desired signal. For instance, from (14),
one observe that there are L outputs from the PCA-ICA algorithm.
Consider the situation where there exists only one speech signal in
a noisy environment or there is only one speech signal closest to the
array, i.e., a strong directional signal exists and coupled with the fact
that the separation algorithm converges. Then the speech signal or
the directional signal will be in the separated outputs [3, 4, 7]. The
task at hand is to identify the speech signal of interest without sub-
jecting to listening test.

Several techniques were proposed in [3, 4, 5] to overcome the
output indeterminacy problem. In [4], the signal of interest, i.e., the
closest speech source to the array was identified by matching the
separation matrix to a direct-path mixing model. Whereas, [5] in-
corporated some information about the human auditory system to
intelligently select the speech signal that is closest to the array. Sim-
ilar to [3], we use the kurtosis as the signal selection strategy. The
selection strategy makes use of the fact that the speech dominant
BSS output has the highest kurtosis since its distribution approaches
Laplacian. The other L − 1 outputs will naturally consist of con-
tributions from noise, in which their distributions will tend towards
Gaussian, yielding a lower kurtosis. Similar to the previous block
based ICA algorithm, the kurtosis method is extended to cope with
on-line demand. A detailed analysis is given in Section 5.

4. NON-UNIFORM SPACING

The motivation behind non-uniform spacing microphone array is ev-
ident from [7, 8], i.e., the physical understanding of the relationship
between wavelength, λ and frequency, ω, c = ωλ, where c is the
sound wave velocity. Naturally, a better phase resolution is achieved
for a wider element spacing for lower frequency range. On the con-
trary, a closer element spacing is required for higher frequency com-
ponents. This paper suggests a straightforward method to perform
separation by utilizing a different combination of elements from a
uniform linear array configuration.

Consider a three-element linear array with inter-element spacing
d. Instead of performing standard BSS directly on the observations,
the separation can be performed according to Figure 3. From the fig-
ure, the separation is performed pair-wise, i.e., the first pair consists
of separation involving elements with spacing d and the second pair
with spacing 2d. Since it is assumed that there is only one speech
signal in a noisy environment, the kurtosis signal selection strategy
is then used to select the speech dominant components from the two
separation processes. Following that, a second stage separation is
performed on the two speech dominant outputs. The purpose of hav-
ing the second stage is to realign the desired signal components as

each pair of microphones (with different spacing) will have different
resolution at each frequency bin, i.e., spacing 2d will achieve bet-
ter separation at lower frequency compared to spacing d [8]. Thus,
to separate the desired signal out, another separation is performed.
By doing so, the approach bypasses the need of bandpassing the ob-
servations to cater for different spacing. Finally, the desired speech
signal is then selected through the kurtosis.

5. EVALUATION

The proposed speech enhancement scheme was evaluated in a real
room of dimensions 3.5 × 3.1 × 2.3 m3 using a two-element linear
array with a spacing of d = 0.04 m. Two loudspeakers emitting
babble noise were placed facing the front two corners of the room
to create diffuseness and three other babble sources were randomly
placed in the middle of the room facing the array. The target signal
was positioned approximately 0.5 m from the centre of the array at
angle 60◦. All simulations were performed with signal to noise ratio
SNR = −0.5 dB and sampling frequency, fs = 8 kHz. The fre-
quency transformation was performed by short-time Fourier trans-
form with an overlapping factor of four.

A simple experiment was conducted to investigate the frequency
binning length effect on the kurtosis. Figure 4 shows the kurtosis
of the separated outputs (L = 2) with different frequency binning
lengths. The solid and the dotted lines show the speech dominant
output and the babble dominant output, respectively. Clearly, as the
frequency binning length increases, the overlap between the speech
and babble outputs decreases. In this experiment, it was found that
a 30-point frequency binning length provides the necessary data to
compute the kurtosis. For comparison purpose, Figure 5 shows the
kurtosis of the actual speech and babble signals with the separated
outputs for frequency binning length of 30. The comparable kurtosis
values between speech dominant BSS output and the actual speech
signal suggests the applicability of the proposed on-line kurtosis.

Table 1 tabulates the suppression and distortion level of the speech
dominant output for the uniform 3-element array and the proposed
method with different number of frequency bins, M . Results show
that the proposed non-uniform approach achieves an average of
3 − 4 dB improvement in suppression compared to the case of uni-
form array. Figure 6 illustrates the relevant spectrograms for the
uniform and non-uniform spacing cases. An experiment was also
carried out with an adaptive noise canceller (ANC) post-processor
[3], labelled as PCA-ICA-ANC in Table 1. Evidently, the ANC ben-
efits from the non-uniform approach with negligible expense on the
target distortion, with an average suppression of more than 13 dB.

6. CONCLUSION

This paper presented an on-line PCA-ICA algorithm, which is suit-
able for real-time implementation. The PCA algorithm is recursively
updated whilst the ICA algorithm is block based. The block based
kurtosis signal selection strategy is also incorporated to transform
the separation process into an extraction process. A non-uniform
spacing approach is also suggested for the algorithm and experimen-
tal results show higher suppression level is achieved compared to its
uniform counterpart.
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