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ABSTRACT

Blind source separation (BSS) algorithms are often categorized as
either narrowband or broadband algorithms depending on whether
their respective cost functions aim at individual DFT bins or the en-
tire broadband signal. In this contribution, we present comparable
general natural gradient-based formulations of both concepts based
on the TRINICON framework. As a distinctive feature, narrowband
algorithms imply an internal permutation and scaling problem. We
show that the common DOA estimation-based methods for aligning
the permutations effectively rely on geometric a-priori knowledge,
and we explain why they need to be complemented by additional re-
pair mechanisms for robust BSS. The latter can already be viewed
as approximations of the generic TRINICON broadband algorithm.
As a conclusion, we propose to always use a generic broadband al-
gorithm as a starting point for the design of new BSS algorithms.

1. INTRODUCTION

Over the last decade, blind separation of convolutive signal mixtures
has become a major research area in signal processing, notably for
separating speech and audio signals in hands-free communication
environments. The main idea of BSS is to retrieve the separated
source signals from convolutive mixtures as recorded by several sen-
sors (see Fig.1). The demixing system should be identified by exclu-
sively exploiting the statistical independence of the sources, which
leads to the notion of independent component analysis (ICA) [1].

For our acoustic communication context, we use the same num-
ber P of audio source signals sp, sensor signals xp, and outputs yp

as shown in Fig.1. Assuming time-invariance for the mixing system
H and the demixing system W, the microphone signals xp(n) and
the outputs yq(n) can be written as

xp(n) =

P∑
q=1

M−1∑
κ=0

hqp,κsq(n − κ), (1)

yq(n) =

P∑
p=1

L−1∑
κ=0

wpq,κxp(n − κ), (2)

respectively, where the length M of the impulse response models
hqp is on the order of at least several hundred samples for realistic
acoustic environments, even at relatively low sampling rates of fs =
8kHz.

In an attempt to compare and generalize the multitude of seem-
ingly different BSS algorithms, TRINICON (’TRIple-N ICA for
CONvolutive mixtures’) [11, 12] has been formulated as a general
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Fig. 1. Generic setup for BSS
framework for blind MIMO signal processing [13], and lead al-
ready to several new BSS algorithms [11, 16, 17], but also to new
algorithms for speech dereverberation [12] and source localization
[15]. In this contribution, we use the TRINICON framework to
study some aspects of the so-called internal permutation problem as
it arises in narrowband BSS algorithms. For that, we present in Sec-
tion 2 a general formulation of natural gradient-based narrowband
BSS algorithms as a specialization of TRINICON and confront it in
Section 3 with the generic natural gradient-based BSS formulation of
TRINICON, which implies a broadband signal model. In Section 4,
we compare the relevance of the sensor arrangement to narrowband
and broadband algorithms, and, in Section 5, point at new hybrid
algorithms as a promising research direction.

2. NARROWBAND BSS

The general idea of narrowband BSS for convolutive mixtures is to
transform the convolutive mixtures in the time domain xp(n) into
instantaneous mixtures in the DFT domain, so that for the demixing
system W only P 2 scalars have to be identified for each frequency
bin, instead of P 2 impulse responses for the broadband signals. The
according instantaneous BSS problem (e.g. [1]) can then be solved
individually in each frequency bin, which intuitively should be con-
ceptually simpler and computationally less complex compared to the
broadband approach.

For a formal description, we apply the DFT to a windowed ver-
sion of a length-R segment of the time-domain signal xp(n), so that
we obtain for frequency bin ν (ν = 0, . . . , R − 1) of the signal
segment m:

x(ν)
p (m) =

R−1∑
r=0

xp

(
r + m

R

α

)
v(r)e−j2πνr/R, (3)

where v(r) denotes the window function and R/α is a shifting inter-
val of the window, with α as overlap factor of successive segments.
Based on this, we formulate the demixing system (2) in the DFT
domain as follows:

y
(ν)(m) = x

(ν)(m)W(ν)(m), (4)
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where

y
(ν)(m) =

[
y(ν)

1
(m), . . . , y(ν)

P
(m)

]
, (5)

x
(ν)(m) =

[
x

(ν)
1 (m), . . . , x

(ν)
P (m)

]
, (6)

and where W(ν) is a P × P matrix whose elements are the DFT
domain counterparts w(ν)

pq of the coefficients wpq,κ in (2). As the
main trait of narrowband ICA algorithms, the update of the coeffi-
cient matrix is performed separately for each bin according to

W
(ν)(m) = W

(ν)(m − 1) − µ∆W
(ν)(m), (7)

where the update term can be written in the general form

∆W
(ν)(m) =

W
(ν)(m − 1) ·

(
m∑

j=0

γ(j, m)(y(ν))
H

(j)Φ(y(ν)(j)) − I

)
(8)

with γ as a weighting function and the score function Φ, which reads
in its optimum general form [6]:

Φ(y(ν)(m)) = −

⎡
⎢⎣

∂p̂(y(ν)
1

(m))

∂y
(ν)
1

(m)

p̂(y
(ν)
1 (m))

, . . . ,

∂p̂(y
(ν)

P
(m))

∂y
(ν)

P
(m)

p̂(y
(ν)
P (m))

⎤
⎥⎦ . (9)

Here, p̂(y(ν)

p
(m)) is the estimated or assumed probability density

function of the ν-th bin of output channel p. Known narrowband al-
gorithms approximate this score function usually by nonlinear func-
tions such as tanh [6] leading to ’higher order statistics’ (HOS) al-
gorithms.

Independent processing of different frequency bins implies the
problem of inconsistent scaling and the so-called internal permu-
tation problem: Inconsistent scaling results from the fact that BSS
algorithms produce outputs which are unique only up to a scaling
factor. With independent BSS in each frequency bin, the scaling will
in general not be the same for different bins of the same source. As a
remedy, the minimum distortion principle (MDP) [18] is commonly
applied. The term ’internal permutation’ describes the effect that fre-
quency components in different bins belonging to the same source sq

do not necessarily appear at the same output channel. To align the
frequency bins correctly, three classes of repair mechanisms have
been developed:

• The separated components are aligned according to the
phases of the DFT bins, which corresponds to a classifica-
tion according to the estimated direction of arrival (DOA) of
the sources (e.g., [2, 3]).

• A second class of repair mechanisms exploits the correlation
of the temporal evolution of spectral magnitudes for a given
source. For a ’local’ version the correlation between the tem-
poral envelopes of neighboring frequency bins is used to align
the components (e.g., in [3, 4]), whereas for the computation-
ally expensive, optimum ’global’ version [5] the correlations
between all frequency bins are accounted for.

• For a third, computationally efficient but suboptimum
method, a spectral smoothness constraint is imposed on the
demixing filters by windowing (shortening) the correspond-
ing impulse responses in the time domain. [6, 7].

Studies based on the TRINICON framework in [14] reveal that the
latter two mechanisms result actually as special cases of the generic
broadband algorithm if some constraints in its DFT-domain formu-
lation are removed, so that the resulting algorithms represent hybrids
of strictly narrowband and strictly broadband algorithms.

3. BROADBAND BSS

As opposed to the narrowband algorithms, broadband BSS algo-
rithms are derived from a time-domain representation and, thus, in-
herently avoid the internal permutation problem. Early publications
(e.g., [8, 9]) aimed at multichannel blind deconvolution and lead
to distortion of the desired signals (’whitening effect’). Within the
TRINICON framework, new broadband BSS algorithms were de-
veloped that avoid the whitening effect and, with proper design, are
able to blindly identify the theoretically optimum signal separation
filters [10]. Note that the latter property can also be exploited for si-
multaneous localization of multiple sources in strongly reverberant
environments [15].

For comparison to the narrowband algorithms above, we sum-
marize the corresponding broadband representation in the time do-
main (see e.g.[11, 13]). The convolution in the demixing system (2)
is captured by the following matrix form:

y(m, j) = x(m, j)W(m), (10)

where m denotes the block index, and j = 0, · · · , N − 1 is a time-
shift index within a data segment of length N + D − 1, and where

x(m, j) = [x1(m, j), . . . ,xP (m, j)], (11)

y(m, j) = [y1(m, j), . . . ,yP (m, j)], (12)

W(m) =

⎡
⎣ W11(m) · · · W1P (m)

...
. . .

...
WP1(m) · · · WPP (m)

⎤
⎦ , (13)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(14)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (15)

=

P∑
p=1

xp(m, j)Wpq(m). (16)

The 2L × D matrix Wpq(m) denotes a Sylvester matrix that con-
tains the L coefficients wpq,l (l = 0, . . . , L − 1) of the demixing
FIR filter, while D (1 ≤ D ≤ L) indicates the number of time lags
used for exploiting the nonwhiteness of the sources:

Wpq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

The generic broadband BSS algorithm, which simultaneously ex-
ploits nonwhiteness, nonstationarity, and nongaussianity, is derived
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by computing the natural gradient of a general cost function mini-
mizing mutual information of the outputs [13]. The resulting natural
gradient-based TRINICON update rule reads:

W(m) = W(m − 1) − µ∆W(m), (18)

∆W(m) =

m∑
i=0

β(i, m)

N−1∑
j=0

W(i − 1) ·
(
y

H(i, j)Φ(y(i, j)) − I
)

(19)

with β(i, m) as a general weighting function allowing for both of-
fline and online implementations, and with the score function

Φ(y(i, j)) = −
[

∂p̂D(y1(i,j))
∂y1(i,j)

p̂D(y1(i, j))
, . . . ,

∂p̂D(yP (i,j))
∂yP (i,j)

p̂D(yP (i, j))

]
, (20)

which is based on the estimated or assumed multivariate probabil-
ity density functions (pdfs) p̂D(·) and p̂PD(·) of dimensions D and
PD, respectively. It should be emphasized here that, for improved
computational efficiency, this generic broadband algorithm and var-
ious approximations will in practice partly be implemented in an
equivalent DFT-domain representation [14, 16].

4. DOA ESTIMATION AND INTERNAL PERMUTATION

As a special aspect when comparing narrowband and broadband al-
gorithms, we investigate the usability of DOA information for solv-
ing the internal permutation problem and, thereby, discuss a crucial
feature of narrowband algorithms. For P = 2, we compare the out-
puts of offline versions [14] of a narrowband algorithm and a broad-
band algorithm, respectively, after convergence (200 iterations) and
for identical experimental conditions: The mixtures were recorded
with sampling frequency fs = 8kHz in a reverberant roomwith a
reverberation time of T60 = 250ms and the sources were emulated
by loudspeakers placed at a distance of 2m and at ±45◦ relative to
the microphone array axis.

As a representative narrowband algorithm we use an HOS-based
algorithm with DFT length R = 2048, α = 8, after [6] (using tanh
as score function) and address inconsistent scaling by the minimum
distortion principle according to [18]. The permutations are combat-
ted by an entirely DOA-based approach after [2].

As a representative broadband algorithm we use a computa-
tionally efficient SOS-based algorithm from [16] with N = 2048,
L = 1024, D = L, approximating the required inverse autocorrela-
tion matrix by a diagonal matrix (’NLMS-like’ normalization).

In Fig. 2, we show the minima in the directivity patterns for
each frequency bin and both outputs after convergence of the narrow-
band algorithm for two different microphone spacings, d = 4, and
d = 20cm. As the BSS algorithms should place a spatial minimum
in the direction of the respective other source, all minima should
appear at ±45◦ for an ideal free-field propagation, and the internal
permutation repair mechanism then only had to align the same min-
imum locations to the same output.

Fig. 2 confirms that realistic rooms do not conform with the free-
field propagation model and minima in the directivity pattern will be
shifted away from the correct DOA due to multipath propagation.
Note that this effect becomes more pronounced with increasing dis-
tance between sources and sensors, and of course with increasing
noise level that is neglected here. Furthermore, it becomes obvi-
ous from Fig. 2 that the severity of the permutation problem with
narrowband algorithms strongly depends on the array geometry: As
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Fig. 2. Minima in the directivity pattern for both outputs of the nar-
rowband approach after DOA-based permutation alignment (micro-
phone spacing d = 4cm (upper plot), d = 20cm (lower plot))

long as the microphone spacing is less than half a wavelength, spa-
tial aliasing is precluded for sources impinging from any direction,
which means that only a single minimum will occur in the angular
range from −90◦ to 90◦. For sources impinging from ±45◦ spa-
tial aliasing is precluded for frequencies f = c/λ < c/(

√
2d)

(with c ≈ 340m/sec as the sound velocity, and λ as wavelength)
which corresponds to approximately 6kHz for d = 4cm and 1.2kHz
for d = 20cm. Above this frequency spatial aliasing occurs and a
purely DOA-based alignment method will necessarily be prone to
errors as can be seen from the lower plot in Fig. 2. As a conse-
quence, DOA-based alignment methods ideally have to concentrate
on the frequency ranges without spatial aliasing to determine the
DOA of the source and will determine a reference for aligning the
bins at higher frequencies from that. This can be interpreted as a
local decision in a reliable frequency range which is then used as
a global decision for all frequency bins. Due to the reduced num-
ber of observations for this decision, it must be expected to be less
reliable relative to a global decision based on all frequency bins or
the broadband signal. Moreover, in realistic scenarios, environmen-
tal noise power is often concentrated in the low frequency range,
so that it becomes difficult to define reliable frequency ranges for
the DOA estimation-based repair mechanisms. Obviously, the align-
ment will also be more difficult if the angular distance between the
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Spacing d in cm NB ch1 NB ch2 BB ch1 BB ch2
4 13.7 10.0 15.5 16.7
20 7.5 8.9 12.7 14.2

Table 1. SIR improvement in dB for P = 2 channels (NB: narrow-
band algorithm, BB: broadband algorithm)

sources decreases. Thus, for its successful employment, the DOA-
based alignment requires that the microphone spacing is explicitly
known and that the free-field propagation model is sufficiently reli-
able. Clearly, such algorithms are not completely blind in the sense
that no geometric knowledge on positions of sensors and sources is
required.

As opposed to such semi-blind narrowband algorithms, the
broadband algorithms inherently avoid internal permutation and
scaling inconsistency and require no geometric knowledge nor do
they impose any restrictions on the array geometry. In Table 1 we
show that this also implies improved performance by comparing the
SIR improvement of both sources as achieved by the demixing sys-
tems for two different microphone spacings, for the narrowband and
the broadband algorithm, respectively.

Clearly, these results support the strategy to supplement the
DOA-based alignment by additional repair methods (as e.g. pro-
posed in [3]) in order to increase robustness against internal permu-
tations with narrowband algorithms.

5. HYBRIDS OF NARROWBAND AND BROADBAND
ALGORITHMS

Given the challenges for DOA estimation-based alignment methods
for combatting internal permutations and the need for additional re-
pair mechanisms, which can already be seen as simplifications of
the generic broadband algorithms (see Section 2), we advocate to
use the TRINICON framework for designing hybrids of narrowband
and broadband algorithms that combine the advantages of narrow-
band (computational efficiency resulting from operating in indepen-
dent frequency bins) and broadband algorithms (preclusion of inter-
nal permutation and scaling inconsistency by preserving the broad-
band nature of the signal) by selectively approximating the generic
wideband algorithms. Thereby, they should remain truly blind and
be suited for a wide variety of microphone configurations, as they
are desirable, e.g., when BSS is used for localization [15] where
large spacings are needed for sufficient spatial resolution. As a
recent successful example, the broadband/narrowband hybrid pre-
sented in [17] exhibits fast convergence, allows for large sensor spac-
ings, and is already implemented as a real-time version on a laptop
for fS = 16kHz.

6. CONCLUSIONS

Confronting narrowband and broadband BSS algorithms in general
but comparable formulations based on the TRINICON framework
supports the investigation of general structural properties and reveals
fundamental limitations. In this contribution, we focused on the use
of DOA information for permutation alignment in narrowband al-
gorithms. As a result, the performance of DOA-based permutation
alignment methods was found to be strongly dependent on the geom-
etry of the experimental setup. Successful DOA estimation-based
algorithms require small microphone spacings and rely on the ex-
ploitation of such geometric information, so that they are not fully
blind any more. Moreover, for sufficient robustness they need to

use additional repair mechanisms for the internal permutation prob-
lem, which can be seen as approximations of a generic broadband
algorithm. As a consequence, we propose to use the TRINICON
framework for truly blind signal separation to design hybrid algo-
rithms which combine the advantages of narrowband and broadband
concepts.
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