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ABSTRACT

A computational auditory scene analysis (CASA) system is
described, in which sound separation according to spatial lo-
cation is combined with the ‘missing data’ approach for au-
tomatic speech recognition. Time-frequency masks for the
missing data recognizer are derived from the statistics of in-
teraural time and level differences; these masks identify acous-
tic features that constitute reliable evidence of the target speech
signal. It is demonstrated that this approach yields good per-
formance in a challenging environment, in which a target voice
is contaminated by another talker and reverberation. The abil-
ity of the system to generalize to source-receiver configura-
tions that were not encountered during training is discussed.

1. INTRODUCTION

Automatic speech recognition (ASR) remains a challenging
problem in noisy and reverberant environments, but human
speech recognition performance in such conditions is rela-
tively robust. One factor that might underlie this difference
is that human listeners analyze the acoustic input using two
ears, whereas ASR systems typically take their input from a
single audio channel.

Binaural processing contributes to human hearing in sev-
eral ways. Firstly, human listeners can localize sounds in
space by comparing differences in sound level and time-of-
arrival at the two ears. These cues are known as interaural
level difference (ILD) and interaural time difference (ITD) re-
spectively. Secondly, binaural mechanisms counteract the ef-
fects of reverberation by suppressing echoes. Finally, binaural
hearing contributes to the ability of listeners to attend to a tar-
get source in the presence of other interfering sounds. Most
simply, listeners may attend to the ear in which the signal-
to-noise ratio (SNR) is favorable. However, binaural mech-
anisms that cancel interference or group acoustic energy that
originates from the same spatial location also play a role.

This paper describes a computational auditory scene anal-
ysis (CASA) system which exploits binaural processing in or-
der to improve the robustness of ASR in multisource, rever-
berant environments. In the first stage of our system, acous-
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tic features (spectral energies) and binaural features (ILD and
ITD) are obtained from an auditory model. The statistics of
the binaural features are used to derive a time-frequency (T-
F) mask, in which each element indicates whether the corre-
sponding acoustic feature is reliable (dominated by the target
sound) or unreliable (dominated by interference). In the sec-
ond stage, the acoustic features and T-F mask provide the in-
put to a ‘missing data’ ASR system, which treats reliable and
unreliable features differently during decoding.

The current paper extends our previous work [1] in two re-
spects. Firstly, we label T-F regions as unreliable if they have
a low interaural coherence; this may be regarded as a model of
the precedence effect [2]. Secondly, we investigate the ability
of the system to generalize to different configurations of the
target source and receiver.

2. METHOD

2.1. Corpus

The input to the system consisted of a target speech signal
and a concurrent, but spatially separated, speech masker. Ut-
terances were drawn from the TIDigits corpus, and consisted
of a sequence of between one and seven digits spoken by a
male talker (possible digits were ‘one’ to ‘nine’, ‘zero’ and
‘oh’). All data were sampled at a rate of 20 kHz. The tar-
get and masking signals were spatialized and reverberated by
the ROOMSIM model of small-room acoustics [3], using a
simulated room of size 6 m × 4 m × 3 m (length × width
× height). The receiver was a simulated KEMAR manikin in
the center of the room, 2 m above the ground. Target speech
was spatialized at an azimuth of 0 degrees, and the masker
was placed at azimuths of 5, 7.5, 10, 15, 20, 30 or 40 de-
grees. Target and masking sources were spatialized at a radial
distance of 1.5 m from the center of the head.

All surfaces of the room had reverberation characteristics
consistent with ‘acoustic plaster’, giving a T60 reverberation
time of 0.34 sec. To investigate the effect of the relative po-
sition of the source and receiver, two conditions were con-
sidered in which the target-receiver axis was rotated by 5 de-
grees and 20 degrees about the center of the head relative to
the longer wall of the room (Fig. 1).
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Fig. 1. Room configurations used in the experiments. The
target is shown as a black circle and possible masker locations
are shown as dotted circles (only three of the latter are shown).

2.2. Auditory model

The binaural input signal was processed by an auditory model
[4]. Cochlear frequency analysis was approximated by a bank
of 64 gammatone filters for each ear, with center frequencies
spaced between 50 Hz and 8 kHz on an ERB-rate scale. Fea-
tures for the recognizer were obtained by extracting the en-
velope from each frequency channel, which was smoothed
by a first-order lowpass filter with a time constant of 8 ms,
and then downsampled to a frame rate of 10 ms. The result-
ing spectral features were compressed by raising to the power
0.3, and then concatenated with their inter-frame differences
(deltas) to provide a vector of 128 features.

For each channel f, a normalized cross-correlationR(t,f,τ)
was computed between the half-wave rectified left and right-
ear gammatone filter responses (denoted xl(t, f) and xr(t, f)
respectively). Specifically, R(t, f, τ) was computed at 10 ms
intervals of time t with a window size of 20 ms (N = 400
samples), for lags τ between -1 ms and +1 ms, as follows:

R(t,f,τ)=

∑
N−1

k=0
xl(t−k, f)xr(t−k−τ, f)√∑

N−1

k=0
x2

l
(t−k,f)

√∑
N−1

k=0
x2

r(t−k−τ,f)
(1)

The ITD was taken to be the lag at which the largest peak
occurred in the cross-correlation; this estimate was further re-
fined by fitting a quadratic curve to the peak. The ILD was
derived for each frequency channel at each time frame by
computing the ratio of the energy at the output of the right-
and left-ear filters, and converting to dB.

R(t, f, τ) has a range of [0,1], where 1 indicates that xl

and xr are perfectly coherent. Following [2], we compute a
measure of the interaural coherence c(t, f), given by

c(t, f) = max
τ

R(t, f, τ). (2)

Interaural coherence is used to identify T-F regions that are
dominated by direct sound (as opposed to reflected sound), as
described in Sect. 2.4.

2.3. Missing data speech recognizer

In the missing data approach to ASR, reliable and unreli-
able acoustic features are treated differently during decoding.

The recognizer is based on hidden Markov models (HMMs)
which are trained in a conventional manner using spectro-
temporal features. During testing, the recognizer is provided
with acoustic features and a mask; the latter indicates whether
the feature describing each T-F region is reliable or not.

Clearly, the main challenge for the missing data approach
is to estimate an accurate mask without prior knowledge of
the target signal. Here, this is achieved by estimating masks
from probability distributions of ILD and ITD. The masks es-
timated in this way are ‘soft’, i.e. each element takes a real
value in the range [0,1] which indicates the probability that
the element is dominated by the target [5].

Eight-state ten-mixture HMMs were used for recognition,
which were trained on reverberated speech recorded at the left
ear of the simulated manikin. Specifically, 4228 utterances by
55 male speakers were used, which were spatialized at 0 de-
grees and reverberated as described above, and then processed
by the auditory model to derive training data for the recog-
nizer. To provide a baseline for comparison, an HMM rec-
ognizer was trained with mel-frequency cepstral coefficients
(MFCCs) derived from the same training set. Specifically,
the feature vectors for the baseline system consisted of 12
MFCCs plus an energy term, delta and acceleration coeffi-
cients, with energy and cepstral mean normalization.

2.4. Mask estimation based on statistics of ITD and ILD

Soft missing data masks were derived from probability dis-
tributions, which indicated the probability that an observed
combination of ILD and ITD was due to a source at 0 de-
grees azimuth. Separate distributions were trained for each
frequency channel, using estimates of ILD and ITD derived
from the auditory model (see Sect. 2.2). The training data
consisted of 120 pairs of utterances, matched for length, for
which one utterance was spatialized at 0 degrees azimuth and
the other at one of eight possible azimuths (-40, -20, -10, -5,
5, 10, 20 or 40 degrees). The utterances were mixed at signal-
to-noise ratios of 0, 10 and 20 dB.

Two histograms of ITD and ILD estimates were produced
for each frequency channel, using bin widths of 0.01 ms and
0.1 dB respectively. The first, Ha, counted the number of ob-
servations of each ITD/ILD pair in all of the training data (i.e.,
observations due to the target source and masking source).
The second, Ht, counted the number of observations of each
ITD/ILD pair due to the target source alone. More specifi-
cally, Ht was obtained by only including observations from
T-F regions that were dominated by the target, as determined
from an a priori mask for the mixture (i.e., a binary mask
constructed using prior knowledge of the target and masker
signals). Separate histograms were trained for each of the 5
degree and 20 degree room configurations.

Given an observation o = (ITD, ILD) from a T-F ele-
ment of a target-plus-masker mixture, the probability that the
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Fig. 2. Effect of histogram threshold θh on speech recognition
accuracy. The selected threshold is shown in bold.

target T is dominant is given by [1]:

p(T |o) = p(o|T )p(T )/p(o) = Ht(o)/Ha(o) (3)

A soft mask was created for each test signal by identifying
the ITD and ILD in each T-F region, and then applying (3)
to determine the probability that the region was dominated by
the target source.

A threshold was applied such that p(T |o) = 0 for Ha(o) <
θh, in order to reduce the effect of insufficient training data for
certain combinations of ILD and ITD. The value of θh was
derived heuristically (see Sect. 3.1). Thresholding in this way
produced a cleaner estimate of P (T |o) with a smooth pro-
gression between regions of low probability (in which few ob-
servations occurred) and regions of high probability (in which
many observations occurred).

During training, observations from element (t, f) were
discarded if the corresponding interaural coherence c(t, f) <
θc. This approach is motivated by the fact that direct sound,
for which the ILD and ITD give an accurate cue to the location
of the source, is associated with a high interaural coherence
[2]. The threshold θc was derived heuristically (see Sect. 3.3).
Similarly, during testing the mask value at (t, f) was set to a
small number (0.3) if c(t, f) < θc.

3. EVALUATION

The system was evaluated by measuring ASR accuracy in re-
verberant conditions where a speech masker was present. The
test set consisted of 240 target utterances, different from those
used during training of the recognizer and probability distri-
butions, which were spatialized at 0 degrees azimuth in the 5
degree or 20 degree configuration. The masker was spatial-
ized at azimuths of 5, 7.5, 10, 15, 20, 30 or 40 degrees, and
mixed with the target source at an SNR of 0 dB. The SNR was
calculated from signals spatialized at 0 degrees azimuth.
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Fig. 3. Effect of room configuration on speech recognition
accuracy for the missing data and baseline (MFCC) systems.

3.1. Experiment 1: Effect of histogram threshold

The histogram threshold θh was tuned by a series of exper-
iments, as shown in Fig. 2. Values of θh = 0, 5, 10 and
50 were compared for the 5 degree and 20 degree room con-
ditions. Generally, increasing the threshold improved ASR
performance. However, in some cases recognition accuracy
decreased with increasing threshold, for target-masker sepa-
rations of more than 20 degrees. The value of θh is therefore
determined by the following trade-off. A low threshold allows
more errors in the mask, especially when the azimuthal sepa-
ration is small since ILD and ITD estimates tend to be inaccu-
rate. A high threshold excludes some accurate ITD and ILD
estimates (which tend to be associated with large azimuthal
separations), but also reduces the influence of unreliable ob-
servations. In the following, we use θh = 10.

3.2. Experiment 2: Effect of room configuration

This experiment investigated the ability of the algorithm to
generalize to a room configuration that was not seen during
training. Fig. 3 shows results for two conditions in which
the ILD/ITD histograms were trained and tested on the same
room configuration, and two conditions in which the training
and testing conditions were mismatched (e.g., ‘Train 20 deg
test 5 deg’ means that the ILD/ITD histograms were trained
on the 20 degree configuration and tested on the 5 degree con-
figuration). Clearly, the system does not generalize well when
the training and testing conditions are mismatched. However,
even in the mismatched condition the missing data system
generally achieves a performance above the MFCC baseline.

3.3. Experiment 3: Role of interaural coherence

Figure 4 shows the effect of the interaural coherence threshold
θc on speech recognition accuracy. A high threshold excludes
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Fig. 4. Effect of interaural coherence threshold θc on speech
recognition accuracy for the 20 degree room condition. The
selected threshold is shown in bold.

most T-F regions from the mask, leading to poor ASR perfor-
mance. Similarly, if T-F regions are used regardless of their
interaural coherence (the ‘no threshold’ condition) ASR per-
formance degrades when the azimuthal separation between
the target source and the masker is large. Choosing θc = 0.85
gave a reasonable compromise.

4. DISCUSSION

Probability distributions of ILD and ITD can be used to de-
rive T-F masks for a missing data ASR system, thus allowing
a target speaker to be recognized with good accuracy in the
presence of an interfering voice and reverberation.

Our approach differs from conventional techniques for ro-
bust ASR using multiple microphones, which usually employ
adaptive beamforming to derive spatially filtered acoustic fea-
tures. Here, spatial information is used to select acoustic fea-
tures rather than filter them. However, our approach is related
to other sound separation techniques that exploit clustering of
features in an ITD/ILD space. Roman et al. [6] describe a sim-
ilar system, although it requires the number of sources, their
locations and the location of the target source to be known;
here, we have made the simplifying assumption that the tar-
get is at 0 degrees azimuth, and hence there is no constraint
on the number of masking sources. Additionally, Roman et
al. do not evaluate their algorithm in reverberant conditions,
as we have done here. Yilmaz and Rickard [7] have described
a blind source separation (BSS) algorithm for separating mul-
tiple sources from two acoustic inputs, which derives a bi-
nary T-F mask from the statistics of relative attenuation and
inter-microphone delay. However, their goal was resynthesis
of the demixed signals rather than ASR, and their algorithm
assumes an anechoic mixing process which is violated in a
reverberant environment.

A weakness of our approach is that performance of the al-
gorithm is quite sensitive to the value of the histogram thresh-
old θh. Using more training data, particularly for difficult
conditions in which the azimuthal separation is small, would
be expected to reduce the sensitivity of the system to this
parameter. Additionally, we are currently investigating the
use of a parametric method (Gaussian mixtures) for modeling
the ILD/ITD probabilility distributions, rather than generat-
ing them directly from the training data: this will smooth the
distributions and should reduce the sensitivity of the system
to the training conditions.

The proposed technique is also quite sensitive to the rel-
ative placement of the source and receiver within the room.
This was mitigated to some extent by labelling T-F regions as
unreliable if they had a low interaural coherence, so that direct
sound was given preference over reflected sound. However,
there is a limit to the extent that this cue can be exploited,
since the masks become very sparse if a high threshold is ap-
plied to the interaural coherence metric.

Future work will address the limitations of the algorithm
discussed above. Additionally, we will investigate whether
the proposed method can be used to exploit the statistics as-
sociated with other auditory features, such as those relating to
periodicity pitch.
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