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ABSTRACT

Several blind source separation algorithms obtain a separat-
ing matrix by computing the congruence transformation that
”best” diagonalizes a collection of covariance matrices. Re-
cent methods avoid a pre-whitening phase and directly at-
tempt to compute a non-orthogonal diagonalizing congruence.
However, since the magnitude of the sources is unknown,
there is a fundamental indeterminacy on the norm of the rows
of the separating matrix. We show how this indeterminacy can
be taken into account by restricting the separating matrix to
the oblique manifold. The geometry of this manifold is devel-
oped and a trust-region-based algorithm for non-orthogonal
joint diagonalization is proposed.

1. INTRODUCTION

Assume that n measured signals x(t) = [x1(t), . . . , xn(t)]T

are instantaneous linear mixtures of p underlying, statistically
independent source signals s(t) = [s1(t), . . . , sp(t)]

T ; this
can be compactly written as

x(t) = As(t),

where the matrix A is an unknown constant mixing matrix
containing the mixture coefficients. We assume throughout
that all vectors and matrices are real, and we let the super-
script T denote the matrix transpose. The problem of inde-
pendent component analysis (ICA) or blind source separation
(BSS) is to identify the mixing matrix A or recover the source
signals s(t), using only the observed signals x(t). This prob-
lem is usually translated to finding a separating matrix W

such that the signals y(t) given by

y(t) = WT x(t)

are estimates of the signals s(t). It is known that this problem
has two basic indeterminacies: without any further informa-
tion, it is impossible to recover the scaling and the order of
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the source signals. For non-Gaussian sources, these are the
only indeterminacies; this also holds under mild conditions
for sources that are not temporally white [1]. We will say that
W is a true separating matrix if WT A can be expressed as the
product of a permutation matrix (order indeterminacy) and a
diagonal matrix (scaling indeterminacy).

In several ICA algorithms, the observed sources x(t) are
used to construct a set of “target matrices” C1, . . . , CN with
the following property: all the matrices WT CiW , i = 1, . . . , N
are diagonal if and only if W is a true separating matrix.
In practice, due to the presence of noise and to the limited
amount of samples of x(t) available, the target set {C1, . . . , CN}
does not admit exact joint diagonalization (JD), and one must
resort to approximate joint diagonalization, that is, find the
matrix W that “best diagonalizes” the target set. The vari-
ous JD-based ICA algorithms differ in the choice of the target
matrices and in the cost function used to define the “best diag-
onalization”. Several possibilities for the choice of the target
matrices are mentioned in [2], and [3] lists a few possible cost
functions. A frequently encountered cost function is

f(W ) =
∑

i

‖off(WT CiW )‖2
F ; (1)

here ‖M‖2
F denotes the square Frobenius norm of M (that is,

the sum of the squares of the elements of M ) and off(M) :=
M − ddiag(M), where ddiag(M) denotes the diagonal ma-
trix whose diagonal elements are those of M . Following the
notation in [4], we let diag(M) denote the vector of diagonal
elements of M .

Most joint diagonalization algorithms, such as the SOBI
algorithm [1], start with a pre-whitening step. First, in or-
der to remove the scaling indeterminacy, it is assumed that
E[s(t)sT (t)] = I . (This is without loss of generality, since
the scaling factors can be absorbed in the columns of A.) A
whitening matrix W̃ is then sought such that one of the tar-
get matrices (say C1, usually an estimation of the covariance
matrix E[x(t)xT (t)]) is reduced to the identity matrix; that
is, W̃T C1W̃ = Ip. It follows that there exists an orthogo-
nal matrix U such that UT W̃T A = I . In a second step, an
orthogonal matrix U is sought that diagonalizes the new tar-

V  945142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



get set {W̃T C1W̃ , . . . , W̃T C1W̃}. This yields a separating
matrix W = W̃U ; see, for example, [1] for details.

Since U is constrained to be orthogonal, it is a solution
of an optimization problem on a manifold—the orthogonal
group, or more generally the compact Stiefel manifold of ma-
trices with orthonormal columns. This calls for the use of
differential-geometric optimization techniques. There has been
interest for optimization on manifolds at least since the work
of Luenberger and Gabay in the 1970s and 1980s; these and
several other references are mentioned in [5]. Applications
to the orthogonal joint diagonalization problem have been
proposed by Rahbar and Reilly [6], Douglas [7], Joho and
Mathis [8], Joho and Rahbar [4], Nikpour et al. [9], Nishi-
mori and Akaho [10].

However, the pre-whitening step that yields the orthogo-
nality constraint has the drawback that it singles out one of the
target matrix C1 of which it would attain exact diagonaliza-
tion at the possible cost of poor diagonalization of the other
target matrices [2]. Moreover, inaccuracies in the computa-
tion of W̃ cannot be compensated in the sequel. Therefore,
a few algorithms have been proposed that directly compute
a nonorthogonal separating matrix W without resorting to a
pre-whitening process; see for example [11, 12, 2, 13].

Amari et al. [11] and Afsari and Krishnaprasad [13] use
differential-geometric concepts for nonorthogonal JD. As was
pointed out in [13], when the off-diagonal cost function (1)
is allowed to take its argument W in the whole set R

n×p of
n×p matrices, it admits a global minimizer at the zero matrix.
More generally, the cost function (1) is not scale invariant;
that is, f(WD) is in general different from f(W ) when D is a
nonsingular diagonal matrix. This issue can be tackled by im-
posing constraints on the power of the separated signals y(t).
However, as argued by Amari et al. [11], this is impractical
in frequently encountered applications where the amplitude
of components may change suddenly; therefore, constraints
should be placed instead on the separating matrix W . Amari
et al. [11] (see also Afsari and Krishnaprasad [13]) propose to
constrain the allowed variations of W to belong to a subspace
orthogonal to the equivalence class {WD : D diagonal}.
The notion of orthogonality used in [11] has been shown to
be a nonholonomic (or nonintegrable) constraint.

Finally, we point out that most algorithms for ICA do
not achieve superlinear convergence, as they are based on
steepest-descent or direct-search ideas. Exceptions are the
conjugate gradient on the Stiefel manifold used by Rahbar
and Reilly [6] and the Newton method on Stiefel of Joho and
Rahbar [4] and Nikpour et al. [9]. Superlinear convergence is
useful when a high precision is sought; this applies to situa-
tions where the noise level is low and the source signals (or
the mixing matrix) want to be recovered accurately.

In this paper, we propose a superlinearly convergent al-
gorithm for nonorthogonal joint diagonalization, based on a
recently proposed trust-region method on Riemannian man-
ifolds [14, 5]; we dub the algorithm RTR-ICA. In compari-

son with the Newton method, the trust-region approach offers
better global convergence properties and similar local con-
vergence properties at a lower computational cost [5]. Our
approach also departs from previous work in the way con-
straints are imposed on the separating matrix W : we require
that W be an oblique rotation [15], that is, all the columns
of W have unit Euclidean norm. Instead of being nonholo-
nomic, this constraint defines a submanifold of R

n×p called
the oblique manifold

OB(n, p) = {Y ∈ R
n×p : ddiag(Y T Y ) = Ip}. (2)

Moreover, in contrast to the Stiefel manifold approach, a pre-
whitening step is not required.

The rest of the paper is organized as follows. The geom-
etry of the oblique manifold is described in Section 2. For-
mulas for the gradient and Hessian of the off-diagonal cost
function (1) are obtained in Section 3. The workings of the
RTR algorithm are briefly explained in Section 4 (we refer
to [5] for details). Numerical experiments are presented in
Section 5.

2. GEOMETRY OF THE OBLIQUE MANIFOLD

We refer the reader to [5] and references therein for the rele-
vant notions of Riemannian geometry. The manifoldOB(n, p)
is the set of all n× p matrices with normalized columns. It is
an embedded submanifold of R

n×p. We consider the canoni-
cal inner product

〈Z1, Z2〉 := trace(ZT
1 Z2) (3)

in R
n×p and view OB as an embedded Riemannian subman-

ifold of R
n×p. The tangent space (which is defined indepen-

dently of the metric) is TY OB = {Z : ddiag(Y T Z) = 0}
which means that yT

i zi = 0, i = 1, . . . , p, where yi denotes
the ith column of Y . The dimension of OB is dim(OB) =
p(n − 1). The normal space (which depends on the embed-
ding in the Euclidean space R

n×p) is NY OB = {Y D : D ∈
R

p×p diagonal}. Projections of Z ∈ TY R
n×p into a normal

and tangent component are PNY
(Z) = Y ddiag(Y T Z) and

PTY
(Z) = Z − Y ddiag(Y T Z).

Finally, in order to apply the RTR schemes on OB, we
must define a retraction, which establishes a correspondence
between tangent vectors and points on the manifolds. A nat-
ural choice that satisfies the required properties [5] is

RY (Z) = (Y + Z)(ddiag((Y + Z)T (Y + Z)))−1/2, (4)

which simply consists of adding Z to Y and scaling the columns
of the result.
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3. THE OFF-DIAGONAL COST FUNCTION ON THE
OBLIQUE MANIFOLD

We compute the gradient and the Hessian of f = f̃ |OB where

f̃(Y ) =

N∑
i=1

‖Y T CiY − ddiag(Y T CiY )‖2
F

=
N∑

i=1

trace(off(Y T CiY )Y T CiY ),

Ci symmetric. Notice that f is a function on OB, and its gra-
dient and Hessian are thus defined in the sense of the manifold
OB endowed with its Riemannian metric (3). Note also the
identity trace(ddiag(A)B) = trace(Addiag(B)). For the
gradient of f̃ , we get (see [16] for details)

grad f̃(Y ) =

N∑
i=1

4CiY off(Y T CiY ).

We project onto the tangent space to obtain the gradient of f ,
which yields

grad f(Y ) = PTY
grad f̃(Y )

=
N∑

i=1

4CiY off(Y T CiY ) − 4Y ddiag(Y T CiY off(Y T CiY )).

Finally,

Hess f(Y )[Z] = PTY
Dgrad f(Y )[Z]

= PTY
Dgrad f̃(Y )[Z] − Zddiag(Y T grad f̃(Y ))

with

Dgrad f̃(Y )[Z] =

N∑
i=1

4CiZoff(Y T CiY ) + 4CiY off(ZT CiY )

+ 4CiY off(Y T CiZ).

4. THE RTR-ICA APPROACH

We now have the necessary ingredients to apply the Rieman-
nian trust-region (RTR) approach to the problem of minimiz-
ing the cost function (1) on the oblique manifoldOB endowed
with the Riemannian metric (3) and the retraction (4). Us-
ing the ingredients in the general RTR algorithm given in [5]
is rather straightforward and will not be done in detail here.
The general idea is as follows. The RTR scheme is an iter-
ative process that, from a current iterate W on the oblique
manifold, produces a next iterated W+ on the oblique mani-
fold. First, a model mW of the cost function f is constructed
around W ; more precisely, mW (Z) approximates f(RW (Z)).
When not too expensive computationally (which is the case

here), it is useful to choose mW as the Newton model, i.e.,
second-order Taylor expansion of f ◦ RW :

mW (Z) = f(W )+〈grad f(W ), Z〉+
1

2
〈Hess f(W )[Z], Z〉.

Next, an (approximate) minimizer of the model is sought within
a region where the model is “trusted” (hence the name of
the method). The size of the trust-region has to be exter-
nally specified for the first iterate; it is subsequently automat-
ically updated: if there is a good agreement between the cost
function and the model at the proposed next iterate, then the
proposed iterate is accepted and the size of the trust region
is possibly increased. If the agreement is poor, the size of
the trust region can be reduced and the proposed iterate can
even be discarded. For more details on the trust-region con-
cept, which originates from the work of Powell in the 1970s,
we refer to [5] and references therein. Finally, we point out
that there are several ways to approximately solve trust-region
subproblems, i.e., to compute an approximate minimizer of a
quadratic model within a trust region. Usually, finding a high-
precision solution of each subproblem is not necessary and
would constitute a waste of computational effort; on the other
hand, the approximate solution has to be sufficiently precise
so that strong local and global convergence properties hold.
To handle this tradeoff, the use of Steihaug’s truncated CG
method is advocated in [5], and we use it in the numerical ex-
periments reported on in the next section. We also refer to [5]
for a convergence analysis of the general RTR schemes.

5. SIMULATION RESULTS

The following simulation follows closely the one in [6]; we
simply increased the number of data points and modified some
of the signals to improve the spatial uncorrelatedness of the
sources. We use four synthetic signals with 106 sample points.
The sources are mixed using a four-by-four randomly gener-
ated mixing matrix A. Three target matrices C1, C2, C3 are
chosen as lagged sample covariance matrices of x(t). The it-
eration is initialized with W equal to the identity matrix. The
performance of separation displayed in Figure 1 is measured
using the formula

Pindex = 20 log10

⎛
⎝ 1

n

⎛
⎝

n∑
i=1

⎛
⎝

n∑
j=1

|qij |

max� |qi�|
− 1

⎞
⎠

⎞
⎠

⎞
⎠ ,

where qij is the (i, j)th element of Q := WT A. To illustrate
the benefit of taking the model mW as the Newton model, we
applied to the same problem the linearly convergent method
obtained by defining mW as the first-order Taylor expansion;
the algorithm then took more than 6000 (inner) iterations to
only reach a performance index of −100.

With a view towards a comparison with the simulation
results in [6, 4], notice that one iteration of nonlinear CG in-
volves a line-search process with possibly several evaluations
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of the cost function, and that an iteration of Newton’s method
involves solving the Newton equation. In contrast, in the trun-
cated CG process, the major work consists in one application
of the Hessian operator per inner iteration.
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Fig. 1. Convergence of RTR-ICA.
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