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ABSTRACT

Recognition of human beings using shapes of their full
facial surfaces is a difficult problem. Our approach is to ap-
proximate a facial surface using a collection of (closed) facial
curves, and to compare surfaces by comparing their corre-
sponding curves. The differences between shapes of curves
are quantified using lengths of geodesic paths between them
on a pre-defined curve shape space. The metric for compar-
ing facial surfaces is a composition of the metric involving
individual facial curves. These ideas are demonstrated in the
context of face recognition using the nearest-neighbor classi-
fier.

1. INTRODUCTION

Automatic face recognition has been actively researched in re-
cent years, and various techniques using ideas from 2D image
analysis have been presented. Although a significant progress
has been made, the task of automated, robust face recognition
is still a distant goal. 2D image-based methods are inherently
limited by variability in imaging factors such as illumination
and pose. An emerging solution is to use laser scanners for
capturing surfaces of human faces, and use this data in per-
forming face recognition [1]. Such observations are relatively
invariant to illumination and pose, although they do vary with
facial expressions. As the technology for measuring facial
surfaces becomes simpler and cheaper, the use of 3D facial
scans will be increasingly prominent. A measurement of a
facial surface contains information about its shape and tex-
ture (more precisely, the reflectivity function). In general, one
should utilize both the pieces of information for recognition.
Given 3D scans of facial surfaces and textured images, the
goal now is to develop metrics and mechanisms for compar-
ing their shapes and textures.
Over the last few years, a number of approaches have emerged
for comparing shapes of facial surfaces [2]. The earliest idea
was to detect a set of feature locations – nose, nose bridge,
eyes, lips, etc - in the face, and use their relative locations to
characterize a face. The next idea was to generate range im-
ages from 3D scans and to utilize techniques from image anal-
ysis to recognize people. A more challenging problem is to

Fig. 1. Top: Examples of facial surfaces of a person under
different facial expressions. Bottom left: Examples of facial
curves Cλ for a surface S. Bottom right: A coordinate system
attached to the face.

recognize 3D face using the geometry of surface deformations
[3], similar to the techniques developed for comparing shapes
of anatomical objects [4]. Our approach is to derive approxi-
mate representations of facial surfaces, and to impose metrics
that compare shapes of these representations. We exploit the
fact that curves can be parameterized canonically, using the
arc-length parameter, and thus can be compared naturally.

Rest of this paper is organized as follows: Section 2 de-
scribes a representation of a facial surface using a collection
of facial curves, and presents metrics for comparing facial
shapes under this representation. Section 3 describes the pro-
cess of extracting facial curves from 3D face meshes. Section
4 presents some experimental results and shows the obtained
recognition rate. We finish the paper with a brief summary in
Section 5.

2. REPRESENTATION OF FACIAL SHAPES

Let S be a facial surface denoting a scanned face. Although
in practice S is a triangulated mesh with a collection of edges
and vertices, we start the discussion by assuming that it is
a continuous surface. More precisely, it is an embedding of
the upper unit hemisphere S

2
+ in R

3. In this definition, we
have assumed that holes in S associated with eyes, nose, and
mouth, are already patched. Some pictorial examples of S are
shown in Figure 1 (top row) where facial surfaces associated
with six facial expressions of the same person are displayed.

Let F : S �→ R be a continuous map on S. Let Cλ de-
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note the level set of F , also called a facial curve, for the
value λ ∈ F (S), i.e. Cλ = {p ∈ S|F (p) = λ} ⊂ S.
We can reconstruct S through these level curves according
to S = ∪λCλ. Figure 1 (bottom left) shows some examples
of facial curves along with the corresponding surface S. In
principle, the collection {Cλ|λ ∈ R+} contains all the infor-
mation about S and one should be able to analyze shape of
S via shapes of Cλs. In practice, however, a finite sampling
of λ restricts our knowledge to a coarse approximation of the
shape of S.

In this paper we choose F to be the depth function. Ac-
cordingly F (p) = pz , the z-component of the point p ∈ R

3.
Our goal is to analyze shape of S invariant to action of the
group of rigid motion SE(3) ≡ SO(3) � R

3 on the surface S
(� implies a semi-direct product, that is the rotation is always
applied before the translation). Let us investigate the variabil-
ity of level sets of F with respect to these transformations.
Rewrite SE(3) as (SO(2) × S

2) � (R2 × R
1), where we can

interpret SO(2) � R
2 as a rigid motion in x − y plane, i.e.

perpendicular to the z axis, S
2 as the direction of the z axis,

and R as translation in z direction. We are assuming that
x − y − z axes form a body centered Cartesian coordinate
system, so that z axis is aligned with the gaze direction, as
shown in Figure 1 (bottom right). Our technique for compar-
ing shapes of closed curves will be automatically invariant to
planar transformations in SO(2)�R

2 and the z-translations in
R. However, we have no simple way of removing variability
due to the change in z direction (or gaze direction) that varies
over the S

2; in general, one has to search over all rotations of
a face in S

2 to best align it with another face. In this paper,
we avoid this search by using facial scans that are collected
while the subjects were staring at the camera.

2.1. Comparing Shapes of Facial Curves

Consider facial curves Cλ as closed, arc-length parameter-
ized, planar curves. Coordinate function α(s) of Cλ relates
to the direction function θ(s) according to α̇(s) = ej θ(s),
j =

√−1. To make shapes invariant to planar rotation, re-
strict to angle functions such that, 1

2π

∫ 2π

0
θ(s)ds = π. Also,

for a closed curve, θ must satisfy the closure condition:∫ 2π

0
exp(j θ(s))ds = 0. Summarizing, one restricts to the set

C = {θ| 1
2π

∫ 2π

0
θ(s)ds = π,

∫ 2π

0
ejθ(s)ds = 0}. To remove

the re-parameterization group S
1 (relating to different place-

ments of origin, point with s = 0, on the same curve), define
the quotient space D ≡ C/S

1 as the shape space.
Let C1

λ and C2
λ be two facial curves associated with two

different faces but at the same level λ. Let θ1 and θ2 be
the angle functions associated with these curves, respectively.
An important tool in a Riemannian analysis of shapes is to
construct geodesic paths between shapes and to use geodesic
lengths as shape metric. The paper [5] provides a numerical
procedure for computing geodesics between arbitrary points
in D. For any two shapes θ1, θ2 ∈ D, they use a shooting

Fig. 2. Geodesic paths between different facial curves.

method to construct the geodesic between them. The basic
idea is search for a tangent direction g at the first shape θ1,
such that a geodesic in that direction reaches the second shape
θ2 in unit time. This search is performed by minimizing a
“miss function”, defined as a L

2 distance between the shape
reached and θ2, using a gradient process. The geodesic is
with respect to the metric 〈g1, g2〉 =

∫ 2π

0
g1(s)g2(s)ds. This

choice implies that a geodesic between two shapes is the path
that uses minimum energy to bend one shape into the other.
Shown in Figure 2 are some examples of geodesic paths be-
tween corresponding facial curves of two different facial sur-
faces. Let d(C1

λ, C2
λ) denote the length of geodesic connect-

ing their representatives, θ1 and θ2, in the shape spaceD. This
distance is independent of rotation and translation in the x−y
plane, and 3D scaling of the facial surfaces.

2.2. Metric for Comparing Facial Shapes

Now that we have defined a metric for comparing shapes of
facial curves, it can be easily extended to compare shapes of
facial surfaces. Assuming that {C1

λ|λ ∈ Λ} and {C2
λ|λ ∈

Λ} be the collections of facial curves associated with the two
surfaces, two possible metrics between them are:

dg(S1, S2) =

(∏
λ∈Λ

d(C1
λ, C2

λ)

)1/|Λ|
(1)

de(S1, S2) =

(∑
λ∈Λ

d(C1
λ, C2

λ)2
)1/2

(2)

de denotes the Euclidean length and dg denotes the geometric
mean. Here Λ is a finite set of values used in approximating a
facial surface by facial curves.

The choice of Λ is also important in the resulting perfor-
mance. Of course, the accuracy of de and dg will improve
with increase in the size of Λ, but the question is how to
choose the elements of Λ. In this paper, we have sampled
the range of depth values uniformly to obtain Λ.

3. DATA COLLECTION AND CURVE EXTRACTION

In this section we describe the process of extracting facial
curves from the scanned 3D meshes. Our general approach
is to convert 3D scanned meshes into range images, and then
use techniques from standard image analysis to extract level
curves.
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Fig. 3. Data capture: each subject was scanned for six differ-
ent facial expressions. Range images of six different subjects
under the same facial expression.
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Fig. 4. Top: Level sets of depth function for several lev-
els. Bottom: Angle functions, observed (marked) and fitted
(solid), for a level curve of the depth function in the range
image shown in right.

Range Image Generation: In this work we used GTS (GNU
Triangulated Surface Library) to remove holes and to refine
the original mesh, the resulting 3D model will have a high
resolution, which allow us to generate high resolution range
images, and to ensure smoothness of extracted level curves.
We also crop the range images near the extremities of the
image, using a standard masking image. Shown in Figure
3(bottom) are some examples of the resulting range images.
Level Curve Extraction: Extraction of level sets, of func-
tions defined on 3D meshes, is not straightforward. Follow-
ing steps summarize the extraction of level curves from range
images: (i) Smooth the range image using a Gaussian filter,
to help improve the extraction performance. Such smooth-
ing does not significantly change the shape of resulting facial
curves, and therefore is a valid step in pre-processing data.
(ii) Extract pixel locations at a certain range, say λ0. (iii) In-
terpolate between the extracted points to build a continuous
curve, closed curve. Some examples of extracted level curves
are shown in Figure 5.
Angle Function Representation: For an observed contour,
denoted by an ordered set of non-uniformly sampled points
in R

2, one can generate a representative element θ ∈ D as
follows. For each neighboring pair of points, compute the
chord angle θi and the Euclidean distance si between them.
Then, fit a smooth θ function, e.g. using splines, to the graph

Fig. 5. Three level sets in each surface. six facial expressions,
same subject.

formed by {(∑i
j=1 sj , θi)}. Finally, re-sample θ uniformly

(using arc-length parametrization) and project onto D using
techniques described in [5]. Shown in Figure 4 right panel
is an example. In the left panel, we show the original graph
{(∑i

j=1 sj , θi)} in marked line, and a smooth fitted function
in solid line. The corresponding facial curves are shown in the
right panel, superimposed on the original range image. Figure
5 shows some more examples of the fitted smooth curves.

4. EXPERIMENTAL RESULTS

In this section we present some experimental results to demon-
strate effectiveness of our approach. First, to demonstrate the
success de and dg by presenting a matrix of pairwise distances
between a small set of faces. This matrix shows that faces
for the same people are closer than faces of different people.
We further emphasize that idea using a simple clustering ex-
ample. We cluster a small number of facial surfaces using
dendrogram clustering, and demonstrate that facial surfaces
of sample people are clustered together, despite having dif-
ferent facial expressions. The original range images gener-
ated were of size 1201 × 900, but we down-sampled them
to 376 × 449. From each range image we extract 1,2,. . . , 5
curves, depending upon the experiment, and used the afore-
mentioned geodesic program to compute pairwise distances
de and dg .

4.1. Distances Matrices

In the first experiment, we considered 60 faces (six facial ex-
pression each for ten persons). These faces are labelled in
order, i.e. 1-6 for person 1, 7-12 for person 2, etc. We com-
puted the distance d(S1, S2) for each pair and the results are
shown in Figure 6(top). The left panel uses de while the right
panel uses dg . To improve the display we have truncated the
values above a certain threshold. (If the pairwise distance ex-
ceeds a certain value, we have set that pixel to be white, while
smaller distances are denoted by darker pixels.) It is easy to
see that both de (left) and dg (right) are successful in impos-
ing smaller distances between different face scans of the same
person.

To further demonstrate these metrics, we have performed
a dendrogram clustering of faces using pairwise distances. In
this experiment we used restricted to 30 facial surfaces associ-
ated with five people (as dendrogram becomes crowded with
more data points). Shown in Figure 6(middle) are resulting
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Fig. 6. (Top): Pairwise distances between 60 facial surfaces.
(Middle): Dendrogram clustering between facial surfaces, in-
dexed 1 to 30. (Bottom): Recognition rate plotted versus
training data size per person.

dendrograms for two metrics. These graphs show that faces
of same people have been successfully clustered together.

4.2. Nearest Neighbor Recognition

In this experiment we used a total of 300 facial surfaces (six
facial expressions each for 50 persons). We divide this set
into training and test sets by taking r (r = 1, 2, . . . , 5) faces
per person as labelled training data, and the remaining 6 − r
faces/person as test data. Then, we use nearest neighbor clas-
sifier and the distance d(S1, S2) to classify each test face.
Since we know the true class of the test face, we can compute
the percentage of correctly classified test faces. This recogni-
tion performance was studied by varying the setup as follows:
first, we computed the recognition performance by changing
r, the number of training faces. Shown in Figure 6(bottom)
are results of this experiment. Each evolution denotes a dif-
ferent number of curves used (in coarsely approximating a
facial surface). For example, C1 denotes the recognition per-
formance obtained when only one curve was to represent a
facial surface (|Λ = 1|). Similarly, C2 uses two curves, C3
uses three curves and so on. The left figure is for de and
the right figure is for dg . CnEuc is the performance for Eu-
clidean average, while CnGeo is that for the geometric mean.

The recognition performance steadily increases with in-

crease in r. This result is intuitive as more training data gen-
erally implies a better classification performance. Another
interesting point is that for a fixed r, the recognition perfor-
mance initially increases with the number of curves.

The performance of nearest neighbor recognition strongly
supports the idea of using geometries facial curves to recog-
nize people. Even with one curve per face, and one training
data, we achieve more than 30% recognition rate. Remember
that uniform sampling will result in only 1/50 = 2% recogni-
tion rate. Using five training faces per person, and five facial
curves per face, we can achieve a recognition rate of almost
92%. Considering that we perform a coarse sampling of a
facial surface and that we completely ignore the surface tex-
tures, this rate is quite significant and points to the possibility
of practical 3D shape-based face-recognition systems.

5. SUMMARY

A new surface descriptor is described for comparing shapes
of facial surfaces via the shapes of facial curves. The basic
idea is to coarsely approximate a facial surface S with a fi-
nite set of level curves, called the facial curves, of the height
function on S. Curve extraction is accomplished using range
images, and metric between facial curves are computed using
an earlier method [5]. A metric on shapes of facial surfaces is
derived by accumulating distances between corresponding fa-
cial curves. Results are presented from clustering and recog-
nition of facial surfaces according to this metric.
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