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ABSTRACT

The link between Bayesian and variational approaches is well
known in the image analysis community in particular in the
context of deformablemodels. However, true generativemod-
els and consistent estimation procedures are usually not avail-
able and the current trend is the computation of statistics mainly
based on PCA analysis. We advocate in this paper a careful
statistical modeling of deformable structures and we propose
an effective and consistent estimation algorithm for the vari-
ous parameters (geometric and photometric) appearing in the
models.

1. INTRODUCTION

One primary difficulty in the context of deformable template
models is the initial choice of the template and of various
parameters in the energies underlying the registration pro-
cess. This problem is of utmost importance in the context
of medical imaging and computational anatomy where peo-
ple try to provide statistical models for anatomical and func-
tional variability, but also in many problems of object detec-
tion and scene interpretation. Building real generative mod-
els, that handle pose variability and yield effective likelihood
ratio tests for various discriminative purposes, is a fundamen-
tal issue mainly unsolved in the context of non-rigid objects.

In [1], a first step toward a statistical approach for the
estimation of templates is proposed. In this paper our goal
is to propose a coherent statistical framework for dense de-
formable templates both in terms of the probability model,
and in terms of the effective estimation procedure of the tem-
plate and of the deformation covariance structure. The qual-
ity of the learned models is tested on the standard problem of
digit classification through simple likelihood ratio tests.

2. THE OBSERVATION MODEL

Let (yi)1≤i≤n be the observed gray level training data. Each
yi is defined on a grid of pixels Λ ↪→ R

2 where for each
s ∈ Λ, xs is the location of pixel s in a specified domain
D ⊂ R

2. The template is a function from R
2 to R. Working

within the small deformation framework ([2]), we assume the
existence of an unobserved deformation field z : R

2 → R
2

such that

y(s) = I0(xs − z(xs)) + σε(s) = zI0(s) + σε(s)

where ε(s) are i.i.d N (0, 1), independent of all other vari-
ables.

2.1. The template and deformation model

The template I0 and the deformation z are assumed to be-
long to subspaces of reproducing kernel Hilbert spaces Vp

(resp Vg) with kernel Kp (resp Kg). Let (pk)1≤k≤kp be a
set of landmarks which covers the domain D, the template
function I0 is parametrized by coefficients α ∈ R

kp through:

Iα = Kpα, where (Kpα)(x) =
kp∑

k=1

Kp(x, pk)α(k). Taking

(gk)1≤k≤kg ∈ D to be a different fixed set of landmarks, for
β = (β(1), β(2)) ∈ R

kg ×R
kg define the deformation field as

zβ(x) = (Kgβ)(x) =
kg∑

k=1

Kg(x, gk)(β(1)(k), β(2)(k)).

Assuming that the underlying deformation field is Gaussian a
Gaussian distribution is induced on β. We denote the covari-
ance matrix of this distribution by Γg.

2.2. Parameters and likelihood

We present a general model which includes mixtures of de-
formable templates. The model parameters of each compo-
nent are denoted by (ατ , στ , Γτ

g)1≤τ≤T , where T denotes the
number of model components, and the weight of the different
mixtures is given by (ρ(τ))1≤τ≤T . We introduce the follow-
ing notation:

η = (θ, ρ) with θ = (θτ )1≤τ≤T and ρ = (ρ(τ))1≤τ≤T ,
where θτ is composed of a geometric part θτ

g = Γτ
g and

a photometric part θτ
p = (ατ , σ2

τ ). We assume that θ =
(θτ

g , θτ
p)1≤τ≤T belongs to the parameter space Θ defined as

the open set Θ = { θ = (ατ , σ2
τ , Γτ

g)1≤τ≤T | ∀τ ∈ {1, . . . , T}
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ατ ∈ R
kp , σ2

τ > 0, Γτ
g ∈ Σ+

2kg,∗(R) }. Here Σ+
2kg,∗(R) is

the set of strictly positive symmetric matrices.
In this general model, the unobserved variables correspond-

ing to an observation yi are the pair ξi = (βi, τi). The likeli-
hood of the observed data can be expressed as an integral over
the unobserved variables:

q(y|θ, ρ) =
T∑

τ=1

∫
q(y|βτ , θp, ρ)q(βτ |θg, ρ)ρ(τ)dβτ ,

where the density functions are given by a Bayesian model.

2.3. The Bayesian model

Even though the parameters are finite dimensional it is un-
reasonable to compute a maximum-likelihood estimator when
the training sample is small. Our goal is to demonstrate that
with the introduction of apriori distributions on the parame-
ters, estimation with small samples is still possible even within
the rather complex framework described here, yielding good
results in some concrete examples. The prior laws used are
the following. Let µp and Γp be a fixed mean and covariance
matrix, then:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∼ νρ

θ = (θτ
g , θτ

p )1≤τ≤T ∼ ⊗T
τ=1(νg ⊗ νp) | ρ

τn
1 ∼ ⊗n

i=1ρ | η = (θ, ρ)

βn
1 ∼ ⊗n

i=1N (0, Γτi
g )| η, τn

1

yn
1 ∼ ⊗n

i=1N (zβiIαi , σ
2
τi

IdΛ) | βn
1 , η, τn

1

with

νg(dΓg) ∝
(

exp(−〈Γ−1
g , Γ0

g〉/2) 1√
|Γg|

)ag

dΓg,

(ag > 2kg + 1),

νp(dσ2, dα) ∝
(
exp

(
− σ2

0
2σ2

)
1√
σ2

)ap ·
exp ((α − µp)t (Γp)−1(α − µp)

)
dσ2dα,

νρ(ρ) ∝
(

T∏
τ=1

ρ(τ)
)aρ

All priors are assumed independent. A natural choice for
the apriori covariance matrices Γp and Γ0

g is to consider the
matrices induced by the metric of the spaces Vp and Vg . De-
fine the square matrices

Mp(k, k′) = Kp(pk, pk′) ∀1 ≤ k, k′ ≤ kp

Mg(k, k′) = Kg(gk, gk′) ∀1 ≤ k, k′ ≤ kg,
(1)

and then set Γp = M−1
p and Γ0

g = M−1
g , which are typical

prior matrices used in many matching algorithms.

3. ESTIMATION: THEORETICAL RESULTS

For the theoretical results we focus here on the particular case
of a single component (i.e. T = 1). The parameter estimates
are obtained by maximizing the posterior density on θ condi-
tional on yn

1 : θ̂n = argmaxθ q(θ|yn
1 ). Denoting by P the dis-

tribution governing the observations (which may lie outside
the prescribed family of models) below are several results re-
garding the MAP estimator in terms of the set Θ∗ = { θ∗ ∈
Θ | EP (log q(y|θ∗)) = supθ∈Θ EP (log q(y|θ))}.
Theorem 1 (Existence of the MAP estimator) ([3]) For any
sample yn

1 , there exists θ̂n ∈ Θ such that

q(θ̂n|yn
1 ) = sup

θ∈Θ
q(θ|yn

1 ) .

Theorem 2 (Consistency) ([3]) Assume that Θ∗ is non empty.
Then, for any compact set K ⊂ Θ,

lim
n→+∞ P ( δ(θ̂n, Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

(δ is any metric compatible with the usual topology on Θ).

Moreover, if we introduce a baseline image Ib : R
2 → R, set

the template as Iα = Kpα + Ib, and denote for any R > 0:{
ΘR = { θ ∈ Θ | |α| ≤ R, }, v(R) = supθ∈ΘR EP (log q(y|θ))
ΘR

∗ = { θ ∈ ΘR | EP (log q(y|θ)) = v(R) }
(2)

then the following result holds for the corresponding MAP
estimator θ̂R

n .

Theorem 3 (Consistency on bounded prototypes) ([3]) As-
sume that 2kg < |Λ|, that P (dy) = p(y)dy where the density
p is bounded with exponentially decaying tails and that the
observations yn

1 are i.i.d under P . Assume also that the base-
line Ib satisfies |Ib(x)| > a|x| + b for some positive constant
a. Then ΘR

∗ �= ∅ and for any ε > 0

lim
n→∞ P (δ(θ̂R

n , ΘR
∗ ) ≥ ε) = 0 ,

where δ is any metric compatible with the topology on ΘR.

The condition 2kg < |Λ| is quite weak and easily fulfilled
in our applications. The condition on the baseline image is
somewhat less natural but is necessary to guarantee that the
estimate remains in ΘR. In practice Ib ≡ 0 works fine.

4. ESTIMATION WITH THE EM ALGORITHM

Since the deformation coefficients βτ
i and the mixture coef-

ficients ρ(τ) are unobserved the natural approach is to use
iterative algorithms such as EM ([4]) to maximize the poste-
rior given the observations η̂ = argmaxη q(η|yn

1 ) , This can
be rewritten as:

max
η,ν

[∫
log q(y, u|η)ν(u)µ(du) −

∫
ν(u) log ν(u)µ(du)

]
.

(3)
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The EM algorithm consists of iterating these two maximiza-
tion steps. Given a current value ηc of η, the maximiza-
tion with respect to the density ν is seen to yield νc(u) =
q(u|ηc, y), or with multiple independent observations, νc(un

1 ) =∏n
i=1 q(ui|ηc, yi). This is often called the posterior density.

Once νc is determined the second maximization - updating
the parameters - involves only the first term in equation (3).

In the present context we initialize the algorithm with the
prior model η0 and we iterate the following two steps:

E Step: Compute the posterior law on (βi, τi), i = 1, . . . , n
as a product of the following distributions which have a den-
sity in β for each τ and are discrete in τ for each β:

νl,i(β, τ) =
q(yi|β, ατ,l)q(β|Γτ

g,l)ρl(τ)∑
τ ′

∫
q(yi|β′, ατ ′,l)q(β′|Γτ ′

g,l)ρl(τ ′)dβ′

M Step:

ηl+1 = argmax
η

Eνl(dξn
1 )(log q(η, βn

1 , τn
1 |yn

1 )).

4.1. Fast approximation with modes

The expressions in the M step require the computation of
expectations with respect to νi,l(β, τ) which has no simple
form. To overcome this obstacle this distribution is approxi-
mated by the Dirac law ν∗

i,l(dβi,τ , τ) = δβ∗
i,τ

where for each
component τ , β∗

i,τ maximize the conditional distribution on
β.

β∗
i,τ = argmax

β
log q(β|ατ,l, στ,l, Γτ

g,l, yi) =

arg min
β

{
1
2
βtRτ

g,lβ +
1

2σ2
l,τ

|yi − Kβ
p ατ,l|2

}
,

where Rτ
g,l = (Γτ

g,l)
−1. We then approximate the joint poste-

rior on (βi, τi) as a discrete distribution concentrated at the T
points β∗

i,τ with weights given by

wl(τ) =
q(yi|β∗

i,τ , ατ,l)q(β∗
i,τ |Γτ

g,l)ρl(τ)∑
τ ′ q(yi|β∗

i,τ ′ , ατ ′,l)q(β∗
i,τ ′ |Γτ ′

g,l)ρl(τ ′)
. (4)

4.2. Using a stochastic version of the EM algorithm

An alternative to the computation of the E-step in a com-
plex nonlinear context, is to use the stochastic approxima-
tion of the EM algorithm (SAEM) coupled with an MCMC
procedure ([5]). Each iteration of this algorithm consists of
three steps: (i) the missing data, here the deformation coef-
ficients, are drawn using a transition probability of a conver-
gent Markov Chain having the posterior distribution as sta-
tionary distribution, (ii) a stochastic approximation is done
on the complete likelihood using the simulated values of the
missing data, (iii) the parameters are updated in the M-step.

• Simulation step : βl+1 ∼ Πθl
(βl, ·)

• Stochastic approximation :

Ql+1(θ) = Ql(θ)+∆l[log q(y, βl+1|θ)−Ql(θ)] where
(∆l) is a decreasing sequence of positive step-sizes.

• Maximization step : θl+1 = argmaxQl+1(θ)

The almost sure convergence of this algorithm toward a (lo-
cal) maximum of the observed likelihood was studied and
proved under general regularity assumptions in ([5]).

5. EXPERIMENTS

We illustrate this theoretical framework with the US Postal
handwritten digit data base. In this context, it is possible
to compare various model settings in terms of classification
rates, although our goal is not to obtain optimal results.

The classification is performed by computing the maxi-
mum posterior on class given the image. The likelihood terms
involve an integral over the hidden variables which is replaced
again by the mode. Some classification results as a function
of number of components per class and size of training set are
given in table 1. We optimized the hyper-parameters involved
in the model (ag, σg , σp) by looking at the classification rates.

Nb. of components 1 2 3 5 10
20 per class 6.58 6.13 5.28 9.57 9.72
100 per class 9.42 4.98 4.58 5.13 4.136

Table 1. Classification results as a function of number of
components per image and size of training set.

5.1. The estimated template and noise variance

Fig. 1. Left: one component prototype. Right: 2 components
prototypes

In figure 1, we show the templates of the 10 classes esti-
mated with the mode approximation with 20 (resp 40) images
per class. For the prior distribution of the template we choose
a mean equal to the background value µp = 0. In this set-
ting the first iteration of the EM algorithm yields to β∗

i = 0
so that the resulting estimated template is the simple mean of
the training images. They are blurred because of the geomet-
rical variability within each class. As the iterations proceed,
the prototypes present higher contrast thanks to the nonrigid
registration.
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The variance σ also evolves through the iterations. It
starts to increase in the first step because of both the geomet-
ric and photometric variability. As the algorithm proceeds
it decreases since the photometric variations due to geomet-
ric variability are reduced. With one component per class,
some classes such as “2” or “4” have a higher noise variance
than others, which seems to imply that they require more than
one template. Increasing the number of components (2 are
enough) this phenomenon disappears.

5.2. The estimated geometric distribution

Fig. 2. Top: Synthesized 2’s with template from second com-
ponent of figure 1 and proper covariance. Bottom: Same tem-
plate using covariance matrix of other 2 component.

To illustrate the form of the estimated geometric distribu-
tion, we show (figure 2, 1st row) 20 synthesized examples of
class 2 (with loop) using its estimated photometric prototype
and geometric covariance matrix. By contrast, in the second
row, we show simulations using the same estimated prototype
with the geometric distribution of the other class 2 cluster.
The deformed 2’s are still realistic but not as natural looking
as the previous ones, implying a non trivial estimated geo-
metric covariance which differs significantly from one com-
ponent to another. This is also observed from one class to
another as can be viewed in figure 5.2 where the 3’s are syn-
thesized using a 3 photometric prototype but the geometric
covariance of digit 2.

5.3. In presence of noise

In figure 4 are shown the single component results when the
training set is noisy, comparing the mode approximation to
the stochastic EM algorithm. With the mode approximation,
the final prototypes are less contrasted and realistic than those
given with the stochastic EM algorithm. It seems that because
of the presence of multiple local minima the gradient descent
used in the mode approximation converges toward a “wrong”
minimum. This is not as severe with stochastic simulation
which allows a larger exploration of the geometric parameter
space.

Fig. 3. 20 synthesized examples of each class

Fig. 4. Left: prototypes in noisy framework learned with the
mode approximation. Right: prototypes in noisy framework
learned with the stochastic EM algorithm

6. CONCLUSION

We have proposed a coherent statistical framework for dense
template models and described two methods to compute the
maximumposterior estimation. The results on likelihood based
classification of handwritten digits, with very small training
sets, demonstrates that this formulation is of practical use and
gives acceptable classification as shown in table 1. The de-
formation model employed here does not necessarily produce
diffeomorphisms, leading to certain difficulties such as be-
havior near the boundaries of the domain. Using diffeomor-
phisms of the domain onto itself, as proposed in [6], would
eliminate these problems perhaps yielding a more stable al-
gorithm.
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