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ABSTRACT
Face recognition is an important pattern recognition problem
in the study of natural and artificial learning systems. In typ-
ical optical image based face recognition systems, the sys-
tematic variability that arises from representing the three di-
mensional (3D) shape of a face by a two dimensional (2D)
illumination intensity matrix is treated as a random variable,
and it is obtained by collecting examples of faces in differ-
ent poses with respect to the camera. More sophisticated 3D
recognition systems employ specialist equipment (e.g. laser
scanners) to measure the shape of the face, and they perform
either pattern matching in three dimensions or they use pro-
jections from 3D models to match against 2D images. It is
shown here that optical images obtained with a pair of stereo
cameras may be used to extract depth information in the form
of disparity values, and thereby significantly enhance the per-
formance of a face recognition system.

1. INTRODUCTION

Pattern recognition involves learning a statistical model, ei-
ther in the form of a parametric density (e.g. mixture of multi-
variate Gaussians) or in the form of a functional mapping (e.g.
artificial neural networks) from a set of examples of different
patterns, and subsequently making inferences on unseen ex-
amples. Variabilities inherent in patterns that belong to a par-
ticular class make this an interesting and challenging prob-
lem, both in an artificial intelligence setting and in the hu-
man perceptual learning setting. Variabilities arise for several
reasons, including the inadequacy of the features chosen to
represent patterns, contextual effects such as co-articulation
in acoustic speech patterns, and random fluctuations due to
sensor noise. The decomposition of these variabilities and
the appropriate representation of uncertainties should be an
essential part of the design of pattern recognition systems.

Photographs of faces are 2D images that capture pixel in-
tensities resulting from an affine projection of an underlying
3D object on the camera image plane. Different poses of the
face with respect to the camera result in a variation in the im-
age space, which is systematic. This systematic variability is
usually modelled as a random variable by collecting a num-
ber of images per subject, captured at different tilts of the face
with respect to the camera axis.

3D face recognition is usually approached in one of three
ways. Model-based approaches (e.g. [1]) use a generic 3D
face model, created using the laser-scanned face models of
all the subjects in the database. Although very accurate, this
approach requires extensive subject co-operation and may re-
quire manual identification of fiducial points on the facial sur-
face. Computational intensity and heavy reliance on pre- and
post-processing limits the applications of such a system.

The second approach reconstructs the facial surfaces for
each person in the dataset using precise depth values, which
may be obtained from a variety of cues such as stereo images,
range images, etc. Surface matching techniques (e.g. ICP) are
used for identification. Stereo-based techniques of [2, 3, 4, 5]
use this approach and report recognition accuracies of over
90%. However, they require accurately calibrated cameras to
reconstruct the surfaces, making it difficult to deploy such a
system out of laboratory conditions, where the cameras may
be subject to perturbations and re-calibration may not be pos-
sible. Incorrect camera matrices lead to incorrect reconstruc-
tions, and hence identification.

In the
� �

� D approach, the depth information is encoded
directly in a 2D image by replacing the intensity values with
the depth values, so that the new pixel values correspond to
the surface geometry of the 3D object (e.g. range images,
depth maps) [2, 6]. Such a representation captures the depth
information of a scene, whilst still enabling all the existing
2D image processing and face recognition techniques to be
used. A comprehensive survey of 3D and multi-modal sys-
tems, combining 3D shape and 2D texture, can be found in
[7, 8].

We used a pair of digital cameras in a stereo setup to cap-
ture the depth information, and our experiments show that
automatic face recognition can be significantly improved by
using a combination of texture and depth information. In ex-
isting systems, recognition is preceded by camera-calibration,
triangulation and surface reconstruction, all of which are error
prone, but these operations are not performed in the work de-
scribed in this paper. Wavelet transforms were used to solve
the correspondence problem between the left and right camera
images. This enabled a disparity field that contains informa-
tion about depth, proportional up to parameters of the camera
matrices (which are constant across all faces and hence do not
play any role in discrimination), to be constructed. The dis-
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parity matrix (Fig. 1) shows the displacement of each pixel
between the two images. The resulting classifier has a single
channel intensity image and a disparity matrix, and when they
are normalised and appended to each other, the combination
forms a high dimensional vector representation, a composite
image, of the face that captures intensity and depth informa-
tion. We design a statistical pattern recognition system in this
space and test it with the state of the art Eigenface approaches.
It is seen from Table 1 that a significant improvement in per-
formance in the classification accuracy is observed.

2. DATA

We collected 540 pairs of stereo images of 22 individuals
(Sheffield Dataset) using a pair of Olympus Camedia C-200Z
cameras. Images with varying pose, illumination and expres-
sions were captured (see Figure 2). The effects of “harsh
lighting” were simulated in two of the images by illuminat-
ing the face strongly from the left side and from underneath.
Individuals who wore glasses were photographed with and
without glasses. The database also contains two females with
a head-scarf, one of whom is also photographed with and
without the scarf. Images of an individual with and with-
out glasses/head-scarf are treated as belonging to different
classes.

The subjects were seated about 60cm from a smooth mono-
tonic background, approximately 300cm from the cameras.
The cameras were separated by a horizontal baseline of ap-
proximately 22cm. To maintain uniformity in illumination
across all individuals, fluorescent lights were used instead
of natural lighting. Although this setup minimises shadows
and reflections, special effort to control these effects was not
made. The pose images were captured by asking the subject
to face signs placed strategically around the room, such that
the degree of rotation was not strictly controlled. In order to
keep the dataset as realistic as possible, restrictions were not
imposed on the expressions displayed by the subjects.

3. METHODOLOGY

The
� �

� D images were computed using Magarey and Dick’s
complex wavelets based multiresolution stereo image match-
ing algorithm [9]. It employs a coarse-to-fine matching strat-
egy, and the disparity field estimated at each level of decom-
position is refined and regularised by using the estimated dis-
parity from the previous coarser level. The field is interpo-
lated, scaled and propagated to the next finer level in order
to obtain robust disparity estimates. The algorithm is sum-
marised in pseudocode form in Figure 3, details on complex
wavelets and mathematical exposition of the algorithm are in
[10] and its application to matching face images is in [9].

The images in the 2D,
� �

� D and the composite spaces
are classified using Turk and Pentland’s principal component
analysis (PCA) based technique of Eigenfaces [11].

PCA is used in the Eigenfaces algorithm to find the vec-
tors that best represent the distribution of face images in the
face space. Each

� � � � �
image � 
 is considered as a vector

in
� �

-dimensional space. The covariance matrix � is com-
puted using the mean-subtracted images ( � 
 � � 
 � � ),
where � is the mean face. A test image � � is recognised
by first transforming it into its Eigenface components. The
weights � � form a vector � � � � � �  � �  " " "  � % ' ) that de-
scribes the contribution of each Eigenface in representing the
input image face, treating the Eigenfaces as a basis set for face
images. See equations 1 and 7 in [11] for further details. The
face classes � * are calculated by averaging the results of the
Eigenface representation over a small number of face images
of each individual.

The class + of the test image is the one that minimises
the distance between the vectors � and � � . We used Craw’s
formulation of the Mahalanobis distance instead of the Eu-
clidean, since it has better discriminatory power and is known
to give superior results [12].

4. RESULTS

Tests were carried out on
� . 0 � � . 0

2D greyscale images. The
� �

� D images measured 2 � 3 � 2 � 3
and were generated using 7

levels of complex wavelet decomposition. The intensity val-
ues and the disparity values were normalised so that they lay
between 0 and 1.

Subsets of 30, 150, 300 and 539 (leave-one-out cross val-
idation) images were used to train the Eigenfaces classifier.
This yielded 1, 5, 10 and approximately 17 images per class
for training, and the rest were used to test the classifier. In or-
der to obtain reliable measures of classifier accuracies and er-
ror measures, the recognition experiments were run 10 times
(except the leave-one-out cross validation). A different set
of randomly chosen images from the Sheffield Dataset was
used to train the classifier in each of the 10 runs of the experi-
ments. The training images in the

� �
� D and composite spaces

correspond to the 2D images used in each run of the exper-
iment. The training images were not used for testing. The
mean recognition rates along with the error margins (standard
deviations) are presented in Table 1.

The accuracy of our baseline recogniser is lower than typ-
ical accuracies quoted in the literature. This is because stan-
dard benchmark tasks include extensive care in the data col-
lection process, with clear lighting, segmentation and highly
restricted pose, and expression variations. Our database has,
however, a higher level of variation. In order to confirm the
accuracy of our implementations, we tested our single image
recogniser on one of the standard benchmark databases, the
Yale Database, and were able to reproduce quoted results.

The results of the experiments clearly indicate that our
composite image representation that incorporates both 2D in-
tensity information and the

� �
� D depth information is a sig-

nificant improvement on either representation by itself. As
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expected, increasing the number of training images per class
improves the performance of the classifier, with the best re-
sults obtained with leave-one-out cross validation using all
except 1 of the images in the class for training.

This new representation also addresses the issue of sys-
tematic variability in face images as the pose of the subjects
varies. The classifier achieves greatest accuracy in the 2D
space (

� � � � � �
) when the number of training images per class

is maximised. Similar accuracy (
� � � � � � � � � � �

) is obtained
in the composite space using only a fraction of the images to
train the classifier. This accuracy can be increased further if
images of individuals with and without glasses/head-scarf are
treated as belonging to the same class, rather than different
classes, as is done here.

5. CONCLUSIONS

In this paper we present the composite image representation
- a simple yet effective way of combining intensity and depth
information for face recognition using Eigenfaces and the Ma-
halanobis distance. This new representation is tested on the
Sheffield Dataset, which is more challenging than many of
the publicly available datasets. The composite image repre-
sentation gives higher recognition rates than the 2D intensity
images and the

� �
� D disparity images, for the same training

and test data. It also addresses the issue of systematic vari-
ability in the image of face as its pose changes with respect
to the camera position. This is highlighted by the fact that
this image representation achieves the same accuracy as the
2D representation, but with fewer images, and it is indicative
of the value of depth information in automatic face recogni-
tion. Furthermore, the use of disparity values instead of actual
depth values means that stereo images can be used without the
error-prone camera calibration and reconstruction processes.
This greatly increases the scope of face recognition applica-
tions because the work can, from theoretical considerations,
be extended to use dynamic images.

Fig. 1. 3D reconstruction and the disparity map (horizon-
tal displacement) generated from a pair of stereo images (full
frontal image shown in Figure 2, image 1). In the disparity
map, note high disparities between the image pairs in regions
of high depth information, (e.g. nose), and low disparity in
flat regions (e.g. background).
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Fig. 2. Sample of images from one of the classes in the Sheffield Dataset.

Method Training images per class
1 5 10 LOO

2D: Left Image Only 33.27
�

3.15 53.13
�

2.11 58.58
�

2.68 62.59
� �

� D: Disparity Map Only 30.16
�

2.72 43.95
�

2.77 46.46
�

2.85 50.00
Composite Image: 2D +

� �
� D 37.96

�
3.82 61.79

�
1.39 67.71

�
2.58 71.48

Table 1. Recognition results for the 2D,
� �

� D and composite classifiers using sets of 1, 5, 10 and 17 training samples per class.
Note the composite classifier is consistently better than the 2D classifier. Further, at only five training examples per face class,
it achieves comparable performance to the leave one out classifier which has 17 training examples per class (recognition scores
in bold font), demonstrating the usefulness of depth information derived from stereo vision.

Algorithm 1: Image Matching Algorithm
Input: Images

�
� � � �

� � � � �
and levels of decomposition � � � �

Output: Disparity field � 
 � � � � �

Perform Complex Discrete Wavelet Transform (CDWT) on
�

� and
� � using complex valued

low-pass and high-pass filters � 
 � � 
 � �

 � � � 	 
 � � � 
 � � � � � � 	 � � � � 	 � , 
 � � � 	 
 � � � 
 � � � � 
 
 � � � � 	 
 � � � � 	 �

Output: Six bandpass images 
 �  " � $
� and 
 �  " � $

� for
�

� and
� � at levels � � 	 & � � � � .

for � � � � � � & 	 // � � � � is the coarsest level of decomposition
Compute disparity field at each level using:
for , - / � 	 & , // , : # pixels in level � bandpass images

Inputs: � 0 � � 0 � � :
� / � 1 �

location of pixels , - / to be matched4
: Fractional offsets to give sub-pixel accuracy

� 
 � � $ � 0 � � 0 � � 4 � � 7 9  : � ; 
 �  " � $
�

� 0 �
� 
 
 �  " � $

�
� 0 � � 4 � ; �

// sub-band squared difference
The correspondent for the left pixel 0 � is the subpixel

� 0 � � 4 �
which minimises � 
 � � $

end for
Output: � 
 � � $ : Disparity Field at level �
Regularise Disparity Field to eliminate random errors & smooth the field
if � ?� � � � � // If this is not the coarsest level

� 
 � � $ � � 
 � � $ � � 
 C � � D � $
end if
Output: Final disparity field estimate � 
 � � $ at level �
Interpolate & Scale disparity field to account for higher pixel density & decreased spacing between
adjacent pixels at level � 
 	 . Propagate interpolated, scaled disparity field to next finer level

end for

Fig. 3. Pseudocode for Magarey’s [10] motion estimation algorithm.
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