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Abstract— As a requisite of content-based multimedia tech-
nologies, video object (VO) extraction is of great importance.
In recent years, approaches have been proposed to handle VO
extraction directly as a classification problem. This type of
methods calls for state-of-the-art classifiers because the extraction
performance is directly related to the accuracy of classification.
Promising results have been reported for single object extraction
using Support Vector Machines (SVM) and its extensions such
as ψ-learning. Multiple object extraction, on the other hand, still
imposes great difficulty as multi-category classification is an on-
going research topic in machine learning. This paper introduces
the newly developed multi-category ψ-learning as the multi-
class classifier for multiple VO extraction, and demonstrates its
effectiveness and advantages by experiments.

I. INTRODUCTION

Video object (VO) extraction is of great importance for
content-based video processing. In recent years, new ap-
proaches have been proposed to meet the challenge by han-
dling VO extraction directly as a classification problem [1] [2].
Each VO is considered as a class, and VO extraction is realized
by classifying every pixel to one of the available classes.
By doing so, the temporal association of the objects between
frames is automatically maintained through classifications, and
as a result it is more robust to objects with complicated motion
characteristics.

Which learning algorithm to use is key to the success of the
classification-based approaches. By using powerful classifiers,
high classification accuracy can be achieved which directly
leads to better performance for VO extraction. For example, ψ-
learning [3], a new learning machine which has demonstrated
both theoretical and experimental advantages over SVM, is
employed in [2] and shows great potential. However, most of
the results reported are limited to the single object scenario.
In other words, only a binary classification problem between
the object and the background has been tackled. At the first
glance, the extension from single object to multiple object
extraction is straightforward since conceptually one only needs
to replace the binary classifier with a multi-class classifier.
Unfortunately, the implementation of such an extension is
far more difficult because multi-category classification is still
an ongoing and immature research topic itself in machine
learning. Nevertheless, any advances in this area offer new
tools that can help researchers tackle the multi-object problem.

The purpose of this paper is twofold. First, it introduces
multi-category ψ-learning [4], a newly developed algorithm for
multi-class learning, to solve the multiple VO extraction prob-
lem. Secondly, it reports the performance of the new learning
algorithm on several MPGE4 standard video sequences instead
of synthetic data which many multi-class learning algorithms
are tested on.

The rest of the paper is organized as follows. Section II
first gives a brief review of the technologies of multi-class
classification, and then introduces multi-class ψ-learning. A
multiple VO extraction method using multi-class ψ-learning is
explained in Section III. Section IV provides the experimental
results which is followed by conclusions in Section V.

II. MULTI-CATEGORY ψ-LEARNING

A. Review of the Multi-Class Margin-Based Classifiers

Over the last decade, margin-based classification technolo-
gies, for which the best known example is SVM [5], have
drawn tremendous attention due to their theoretical merits and
practical success. Instead of directly estimating the conditional
probabilities, the margin-based classifiers focus on the decision
boundary, which, however, makes it difficult to generalize their
applications from the binary to multi-class scenario.

“Single machine” and “error correcting” are two main-
streams for multi-class margin-based classification. As its
name suggests, the “single machine” approach attempts to
construct a multi-class classifier by solving just a single
optimization problem [6]–[10]. On the contrary, the “error cor-
recting” approach [11] [12] works with a collection of binary
classifiers, for which the primary studies are to determine what
binary classifiers should be chosen to train and how to combine
their classification results to make the final decision. A good
overview of multi-class classification can be found in [13]
and [14].

As a natural extension of binary large margin classifica-
tion, the “single machine” approach is intuitively appealing.
Recently, it has drawn even more attention when certain
formulations are reported to yield classifiers with consistency
approaching the optimal Bayes error rate in the large sample
limit. Multi-class ψ-learning is such a learning algorithm.
Unlike the other margin-based classifiers, ψ-learning aims
directly at minimizing the generalization error (GE), and as
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Fig. 1. ψb function for binary ψ-learning and FSVM function for SVM.

a result its binary version has shown significant advantage
over SVM in terms of generalization both theoretically and ex-
perimentally [3]. The extended multi-class ψ-learning retains
the desirable properties of its binary counterpart. In addition,
a computational tool based on the recent advance in global
optimization has been developed to reduce the time of the
training of the “single machine” [15].

B. Notations of Multi-Category ψ Learning

In the frame work of multi-category ψ-learning, the class
label is coded as y ∈ {1, 2, . . . ,M}, and the decision rule is

y = arg max
i=1,...,M

fi(x), (1)

where M is the number of classes and fi is the decision
function of class i for i = 1, . . . , M . For the linear classifier
fi(x) = wT

i xi + bi.
As a characteristic of multi-class problems, multiple com-

parisons between classes need to be performed. To sim-
plify the notations, an (M − 1)-dimensional function vector
g(x, y) and a multivariate sign function sign(u) where u =
(u1, . . . , uM−1) are defined as follows

g(x, y) = (fy − f1, . . . , fy − fy−1, fy − fy+1, . . . , fy − fM ),

sign(u) =
{

1, if umin = min(u1, u2, . . . , uM−1) ≥ 0;
0, if umin < 0. (2)

As mentioned before, the most prominent feature of ψ-learning
is the direct consideration of GE. Defined as the probability
of misclassification, GE yielded by an M -class classifier is
GE = E[Y �= arg maxi=1,...,M fi(x)]. It can be shown that
with the notations of g(x, y) and sign(u) GE can be rewritten
as GE = 1

2E[1 − sign(g(x, y))].

C. Multi-Category ψ-Learning

Seeking the function f to minimize GE is the ultimate goal
for any learning algorithm. For example, in the coding system
described above1, the cost function of linear SVM can be
rewritten as [4]

minimize : 1
2

∑2
j=1‖wj‖2+C

∑N
i=1FSVM

(
fyi

(xi)−f3−yi
(xi)

)
,

subject to :
∑2

j=1 fj(x) = 0 for ∀x,
(3)

where N is the number of training samples and the sum-
to-zero constraint is invoked to eliminate the redundancy in

1Conventionally, the formulation of SVM is expressed in the coding system
where the class label y ∈ {−1, 1}.

(f1, f2). Here the so-called hinge loss FSVM(u) = 0 if u ≥ 1,
and 2(1 − u) if u ≤ 1 is a convex upper envelope of
(1 − sign(u)). However, there is a difference between this
convex envelope and (1 − sign(u)) itself especially for the
nonseparable case for which the training error is inevitable.
Motivated by this consideration, Shen et. al. proposes to
replace FSVM with a non-convex ψ function [3] [4] as

minimize : 1
2

∑2
j=1‖wj‖2 + C

∑N
i=1 ψb

(
fyi

(xi)−f3−yi
(xi)

)
,

subject to :
∑2

j=1 fj(x) = 0 for ∀x.
(4)

Here ψb can be any function satisfying R ≥ ψb(u) ≥ 0 if
u ∈ [0 τ ] and ψb(u) = 1 − sign(u) otherwise, where ψb(u)
is non-increasing in u and τ ∈ (0 1]. An example of such
a function is shown in Fig. 1(a). Evidentally because of the
constant penalty for misclassification ψb is much closer to
(1 − sign(u)) than FSVM (Fig. 1(b)), which explains why ψ-
learning is expected to deliver higher accuracy performance
for the nonseparable case.

In analogy to Eq. (4) which is for binary classification, the
multi-category ψ-learning is formulated as

minimize :
1
2

M∑
j=1

‖wj‖2 + C
N∑

i=1

ψ
(
g(xi, yi)

)
,

subject to :
M∑

j=1

fj(xi) =
M∑

j=1

(wT
i xi + bi) = 0. (5)

The ψ function here is a multivariate version of ψb with (M−
1) arguments which is defined as{

R ≥ ψ(u) > 0, if u ∈ (0 τ1] × . . . × (0 τM−1];
ψ(u) = 1 − sign(g(x, y)), otherwise,

(6)
where 0 < τ1, . . . , τM−1 ≤ 1 and ψ(u) is non-increasing in
each uj . The multi-category ψ-learning preserves the desired
properties of its binary counterpart. More specifically, for any
x satisfying sign(g(x, y)) = −1, ψ assigns a constant penalty
which is in the same spirit as GE. As a result, it is less sensitive
to outliers and offers better learning ability.

III. MULTI-OBJECT EXTRACTION USING

MULTI-CATEGORY ψ-LEARNING

Because of the variety of video contents, the background
and the objects are usually nonseparable. For this reason, a
VO extraction method employing binary ψ-learning as the
classifier is proposed in [2], and the results of single VO
extraction demonstrate its superior advantage. The basic idea
of [2] is to decompose each frame into small blocks, and use
ψ-learning to classify them as object or background class.
The object of interest is then formed by all the foreground
blocks. For the remainder of this paper, we will integrate
multi-category ψ-learning into this method to tackle the task
of multi-object extraction.

There are two phases: the training phase and the tracking
phase. Suppose we have M VOs of interest. The training
phase begins with dividing the first frame, chosen as the
training frame, into (M + 1) types of blocks (the number
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Fig. 2. The extraction performance of Students. (a) Frame 15. (b) The first object extracted from frame 15. (c) The second object extracted from 15. (d)
Frame 90. (e) The first object extracted from 90. (f) The second object extracted from frame 90.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. The extraction performance of Trevor. (a) Frame 6. (b) The first object extracted from frame 6. (c) The second object extracted from frame 6. (d)
The third object extracted from frame 6. (e) Frame 41. (f) The first object extracted from frame 41. (g) The second object extracted from frame 41. (h) The
third object extracted from frame 41.

(a) (b) (c) (d) (e)

Fig. 4. The extraction performance of Sun Flower Garden. (a) Frame 2. (b) The first object extracted from frame 2. (c) The second object extracted from
2. (d) Frame 114. (e) The first object extracted from 114.

of different VOs plus background) depending on which object
or background the pixel at the center of the block belongs
to. Discrete Cosine Transform (DCT) is applied to each block
and based on the DCT coefficients the local and neighboring
features are constructed to represent every block as well as
the centering pixel. Then by solving the optimization problem
Eq.(5), (M +1) decision functions that separate the M objects
as well as the background are obtained.

In the tracking phase, each subsequent frame is also divided
into blocks, and for each block the M + 1 decision functions
are evaluated to decide which object the centering pixel
belongs to, which consequently determines the class label of
the block. Then the tracking mask of every object is formed by
the blocks that have been classified to be in the corresponding
class. At this point the resolution of object’s boundary is as
large as the size of the block. Then by applying a pyramid
boundary refining algorithm [2], the object boundary can be
refined and the pixel-wise accuracy can be achieved. Interested
readers are referred to [2] for more details of the latter
algorithm.

IV. EXPERIMENTAL RESULTS

Experiments are conducted on some standard MPEG-4 test
video sequences, and the performance comparisons are made
between multi-category ψ-learning and three popular multi-
class algorithms, namely one-vs-all, one-vs-one and directed
acyclic graph (DAG) [16].

The first one to test is Students. As the major content of
this sequence, the two students are chosen as two objects of
interest and along with the background this is a three-class
classification problem. As one can see from frame 15 and
90 as shown in Fig. 2(a) and 2(d) respectively, Students is
a typical head-and-shoulder type of sequences. The extracted
students are shown in Fig. 2(b), 2(c), 2(e), and 2(f).

Another sequence containing three people is also tested, and
the three people are considered as three objects which makes
it a four-class classification problem. The original frames and
the extracted objects are shown in Fig. 3.

Among the sequences tested in the experiments, Sun Flower
Garden is the most challenging one. Unlike the previous video-
conference kind of sequences, it displays a natural scene that
is rich of colors and textures with a non-stationary camera.
There are two objects of interest: the house and the tree. For
the first few frames, the house is occluded by the tree. One
of such frames is shown in Fig. 4(a), and the two extracted
objects (house and tree) by using ψ-learning are shown in Fig.
4(b) and 4(c). With the camera moving, the tree shifts toward
the left hand side of the frame and finally disappears as in
Fig. 4(d). From that point on, only the house can be extracted
by the proposed method as shown in Fig. 4(e).

The computational complexity of the new approach deserves
a discussion. Assume there are N classes and each pixel is rep-
resented by a R-dimensional feature vector x. In the tracking
phase, we need to evaluate N functions fi = wT

i x + bi each
of which performs R multiplications to decide the class label
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(c) Sun Flower Garden

Fig. 5. The comparison of classification errors between multi-category ψ-learning, one-vs-all, one-vs-one and DAG. SVM is the underlying binary classifier
employed by one-vs-all, one-vs-one and DAG.
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Fig. 6. The comparison of classification errors between multi-category ψ-learning, one-vs-all, one-vs-one and DAG. Binary ψ-learning is the underlying
binary classifier employed by one-vs-all, one-vs-one and DAG.

of a given pixel. As a result, the computational complexity is
O(NR), a linear function of the number of objects N , which
gives the approach low complexity and good scalability.

For their simplicity and effectiveness, one-vs-all, one-vs-
one and DAG are three widely-used multi-category algorithms.
To see how ψ-learning performs against these three methods,
the classification errors yielded by all the four methods are
displayed every 5 frames in Fig. 5 and Fig. 6, where SVM
and binary ψ-learning are the underlying binary classifiers
respectively. As one can see, for all the three sequences, ψ-
learning achieves the lowest classification errors almost for
every test frame. Although the training is conducted only once
by using the first frame, the superior generalization ability of
ψ-learning enables it to survive nearly the whole sequence.

V. CONCLUSIONS

VO extraction is of great importance for content-based
video analysis, and the multi-object scenario imposes great
challenges. Following the idea that handles VO extraction
directly as a classification problem, this paper attempts to
tackle multiple object extraction by solving a multi-class
classification problem and using multi-category ψ-learning,
a newly developed learning algorithm, as the classifier. The
experimental comparison between ψ-learning and other three
popular multi-category classifiers has shown the potential of
this new learning machine in the application of VO extraction.
Low complexity, which is another advantage of the proposed
method, scales well when the number of objects increases.
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