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ABSTRACT 

To improve the performance of asynchronous brain interface (ABI) 
systems, a new classifier design is proposed.  The spatial 
information of multiple EEG channels data is first used to create 
independent classifiers for different channels. A subset of these 
classifiers is then selected by a genetic algorithm to form a multiple 
classifier system (MCS) to decide whether a trial is an intended 
control or a no control signal. The analysis of the data from 4 
subjects shows the effectiveness of the proposed method in 
improving the performance of an ABI system compared to the 
results obtained using only the best performing channel. 

1. INTRODUCTION 

A brain interface (BI) provides an alternative communication 
channel between a user’s brain and a device. A successful BI 
design enables its users to control their environment (e.g., light 
switch or a wheelchair), a neural prosthesis or a computer by 
thinking of it only. This is done by measuring specific features of a 
person’s brain signal that relate to his/her intent to affect control. 
These features are then translated into signals that are used to 
control/actuate devices. For a review of the field, see [1]. 
      An Asynchronous Brain Interface (ABI) is a BI system that can 
always accept a control command from the user once the system is 
on. Such a system should not only be able to detect a specific 
pattern related to control , but it should also be robust enough so as 
not to be activated when the user does not intend to control the 
device [2] . Hence, it is very important to keep the FP rate as low 
as possible in order to prevent the user frustration. Unfortunately, 
the FP rates of current ABI systems are too high for such purposes.  
     In this paper, a new scheme that decreases the FP rate and 
increases the TP rate of ABI systems is presented. In this scheme, 
every EEG channel is regarded as a separate source of information. 
Then a separate ABI transducer or an “expert”, consisting of a 
feature extractor followed by a feature classifier, is designed for 
each channel. If the experts are all accurate (they have 
performances better than chance) and independent (they make 
errors on different patterns) , it is then expected from the theory of 
multiple classifier systems (MCS) that improvements in the 
performance of the system can be achieved by combining the 
outputs of these expert systems. In [3], it is shown that by using a 
MCS (consisting of neural networks where each network processes 
a separate EEG channel), improvements in the performance of a 
synchronous BI system is achieved. 

     Since not every channel necessarily has a positive contribution 
to the performance of the system, a channel selection method 
should be incorporated in order to select the best channel 
combination. In this paper, this is carried out by using a genetic 
algorithm. The analysis of the data of 4 subjects shows that the 
performance of the new scheme is significantly better compared to 
the performance of the best performing single channel classifier. 
     The organization of this paper is as follows: In Section 2, ABI 
systems are discussed briefly. In Section 3, the proposed scheme 
for improving the performance of an ABI system is described.  In 
Section 4, the results of analysis for 4 able-bodied subjects are 
presented. Section 5 is dedicated to discussion and conclusions. 

2. ASYNCHRONOUS BRAIN INTERFACE SYSTEMS 

To date, most BI researchers have focused their attention on 
synchronous control applications. In these applications, a user can 
initiate a command only during certain periods specified by the 
system. It is assumed that a user intends some control action during 
these specified times. In contrast, many real-life applications, such 
as the control of a wheelchair, require user- initiated control at any 
time. These types of applications (called asynchronous control 
applications) are characterized by allowing the system to be always 
in the “Ready” state, once it is switched on.  These asynchronous 
systems are characterized by two states: Intentional Control (IC) 
and No Control (NC). During a NC period, a user of an ABI 
system may perform tasks other than control. It is not necessary 
that the user remains in a complete idle state (i.e., a user may be 
idle, thinking about a problem, or performing some action other 
than control). During an IC period, a user intends to issue a 
specific control command. Thus users consciously control their 
state only when they desire to control a device [4]. 
     The performance of an ABI system is usually evaluated through 
two metrics: a true positive (TP) rate and a false positive (FP) rate. 
A FP rate is the percentage of misclassifying a NC trial as an IC 
trial, and a TP rate is the percentage of correctly classifying an IC 
trial.  The FP rates of current ABI systems are still very high for 
practical applications. The main reason is the very noisy nature of 
the input signals of a BI system (especially the ones using EEG 
signals). This makes the correct detection of patterns difficult.  
Nevertheless, it is crucial to keep the FP rate as low as possible in 
order to prevent user frustration [2].    In the next section, a scheme 
is proposed which uses the spatial information of multiple EEG 
channels to improve the performance of an ABI system. 
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Fig.1. the overall structure of the proposed scheme

3. THE METHOD 

The current main approach in the design of many ABI systems is to 
extract a number of features from different channels, form a feature 
vector (FV) and then classify this FV as an IC or NC state. The 
main challenge in such approach is that of finding a tradeoff 
between exploring more features and handling the complexity of 
the algorithm due to the size of the FV. Hence, prior to 
classification, feature selection may be applied in order to reduce 
the size of the FV. There are two main approaches for feature 
selection: filtering and wrapper. Filtering methods use a criterion 
other than classification accuracy to filter the irrelevant coefficients 
prior to classification and then the remaining features are used for 
classification. The main issue with such approach is that it is not 
guaranteed that once classified, the selected features work well 
together. The second approach (wrapper) selects a subset of 
features which yield the best classification accuracy. The main 
issue with this approach is the computation complexity.   
     There are, however, other designs for an ABI transducer that are 
based on a single channel data. In ([5] and [6]), ABI systems based 
on the data of a single ECOG channel are developed.  Although the 
results based on single channels are promising, in some cases the 
FP rates remain too high for a practical system. In this study, we 
explore the effects of considering the spatial information in 
improving the performance of such systems.  
     In [3], the authors used a multiple classifier system (MCS) for 
channel combination in order to classify three types of movements 
in a synchronous BI system. The successful application of a MCS 
in [3] further motivated us to develop a similar scheme for ABI 
systems, where it is crucial to decrease the FP rates as much as 
possible. The theory of MCS provides an excellent means to 
achieve this goal. 
     The main idea behind the proposed scheme is to effectively use 
the spatial information of the EEG channels to improve the 
performance of the system. Fig.1 shows the overall structure of the 
proposed scheme. A separate transducer or an expert system (a 
feature extractor, FE, followed by a feature classifier, FC) is 
designed for each channel. In this paper, matched filtering is used 
for feature extraction. The input is cross-correlated with a template 
and a simple thresholding scheme is used for feature classification. 
A template represents MRP pattern related to the intended right 
index finger movement. Since the EEG signals vary from one 
channel to another, it is expected that a specific movement pattern 
results in different templates in different EEG channels. This is 
crucial in a MCS: having independent classifiers. If the designed 

expert systems have performances better than chance, it is then 
expected that by combining them, improvements in the 
performance of the system are achieved. In this section, the 
proposed scheme will be discussed in details.  

3.1 Data Recording 

The off-line data used in this paper, were collected from 4 able-
bodied subjects (all male and right-handed). Subjects pressed a 
finger switch by their right index fingers after a cue appeared on 
the monitor screen.  The EEG signals were recorded from 13 
monopolar channels at F1, Fz, F2, FC3, FC1, FCz, FC2, FC4, C3, 
C1, Cz , C2 and C4 locations.  Electro-oculographic (EOG) 
activity was measured as the potential difference between two 
electrodes, placed below and at the corner of the right eye. All 
signals were sampled at 128 Hz and referenced to the ear 
electrodes. Then the bipolar EEG data were generated by 
calculating the difference between the adjacent monopolar 
channels resulting in 18 bipolar EEG channels. The details of 
experiments carried out for recording the data were reported in [7].  

3.2. Datasets 

All the EEG signals were first low pass filtered to frequencies 
below 4 Hz using a linear phase FIR filter. This frequency band 
was selected because in our previous studies, it was found to be 
suitable for the study of Movement Related Potentials (the 
neuromechanism that is used for driving our BI system).  
     The IC trials data were collected during the 2.5 seconds period 
spanning 1.5 seconds before to 1 second after the switch 
activation.  After rejecting trials contaminated with EOG artifacts 
(see [7] for details), an average of 300 IC trials were collected for 
each subject. 
      For the NC trials, the data was collected by sliding a window 
of width 2.5 seconds over the EEG signals recorded during the NC 
sessions. The sliding (shifting) step was 1/8 seconds. The 1/8 
seconds shift was determined based on the maximum frequency of 
the neuromechanism of interest (4 Hz). After rejecting artifact-
contaminated trials, approximately 5000 NC trial data were 
collected for each subject.   
     Both IC and NC datasets were then randomized and divided in 
training, validation and test sets.   The training set is used to 
generate the templates. The validation set is used to identify the 
best configuration of the MCS. The configuration which yields the 
least error on the validation set, is selected.  The performance of 
the system on the test set is then calculated. In order to reduce the 
bias in the results, we used a 5 fold nested cross validation for the 
analysis. For each outer validation set, 20% of the data are used for 
testing and the rest are used for training and model selection. In 
order to select models, the datasets in each inner cross-validation 
are further divided into 5-fold themselves. For each fold, 80% of 
the data are used for generating a template the rest are used for 
model selection.  

3.3 Creating a template 
        
For each subject, the IC data in each training set were averaged 
and low-pass filtered to frequencies below 4 Hz, using the same 
filter described in 3.2, to create the templates. This second stage of  
filtering was done in order to remove any potential high-frequency 
component, resulting from averaging. 
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Fig 2. Sample templates for channel FCz-Cz, Subject AB1. 

     Fig. 2 shows sample templates of the MRP pattern in the 
bipolar channel FCz-Cz of Subject AB1. The activation time of the 
switch is at sample number 192 (Note that 128 samples equal one 
second). The templates are plotted for each of the five folds of the 
training sets (roughly 180 trials for this subject).  As seen in this 
figure, the general shapes of the averages are similar over different 
training sets. These averages will be used later as templates for 
cross correlation with the input signals.  

3.4 Cross Correlation 

Cross correlation is an effective, yet easy to implement, method for 
waveform detection in the presence of noise. Since it is expected 
that the shapes of the single-trial IC data in the cross-correlogram, 
have some resemblance to the template, we postulated that a peak 
should be found around 320 samples (2.5 seconds). Fig.3 shows 
the histograms of the time of peaks of the cross correlogram of an 
IC validation set (channel FCz-Cz of Subject AB1). As seen in this 
figure, the timing of the peaks of the cross correlogram, occurs 
around the 320 sample (2.5 seconds) after the start of the sequence. 
However, this is not the case for NC trials and the timing of the 
peak of the cross-correlogram, has relatively a flat distribution.  
This is also to be expected, because of the random nature of the 
NC trials. Based on these observations, which were consistent 
among the subjects and over different channels, we decided to 
extract the maximum of the cross-correlogram in the range of 
[WindowSize-8, WindowSize+7] samples as the feature from each 
trial (WindowSize =320 samples). The size of this observation 
window (16 samples or 1/8th of second) was chosen such that none 
of the features corresponding to NC trials is missed in the process 
of generating NC features (note that the NC trials are generated by 
extracting windows with the length of WindowSize and shifting 
this window by  16 samples over the EEG signals). 

3.5. Threshold classifier 

 A simple threshold classifier was used for classification. If the 
value of an IC feature exceeded the value of a threshold, a TP is 
detected and if an NC feature exceeded a threshold, a FP               
is detected. A total of 101 threshold values from 0   to 1 (with the 
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Fig 3. The time histogram of the maximum of cross-correlogram 
over a typical validation set (channel FCz-Cz, Subject AB1). 

increments of 0.01) were tested and the values were stored. 
      For participation in a MCS, a classifier should not only be 
diverse compared to the other classifiers, but it should also be 
accurate enough (i.e. classify better than chance). As a result, only 
thresholds, which yielded TP > 50% and FP<50% on average on 
inner cross-validation sets were considered acceptable. For each 
channel, out of all the acceptable thresholds, the one which yielded 
the maximum TP/FP rate over the inner cross validation sets was 
selected as the final thresholding value for that particular channel. 

3.6 Multiple classifier systems (MCSs) 

The basic rationale behind using a MCS in our analysis is that the 
design of a single classifier with high performance for an ABI 
system is not a straightforward task at all. This is mainly due to the 
very noisy nature of the EEG signals, which makes the detection of 
the MRPs from the background EEG very difficult.  The general 
hypothesis is that designing a strong classifier by fusing multiple 
weak classifiers is simpler than the design of a single high 
performance classifier.  
     One important issue in the design of a MCS is to create 
independent (diverse) classifiers. There are many methods of 
creating diverse classifiers, including boosting, bagging, using 
different features, etc. [8]. In this paper, we used the spatial 
information of channels for creating a diverse set of classifiers. 
Majority voting [8] is used for combining the outputs of classifiers.  

3.7 Multi-objective GAs for channel combination 

We applied a Genetic Algorithm (GA) [9] for the selection of 
classifiers with the highest classification accuracy yielded on the 
validation sets. With this approach, we were seeking to minimize 
the dependency on using diversity measures for classifier selection.  
     Each individual in the population has M bits, where bit i 
specifies whether or not the classifier # i is present in a particular 
MCS scheme. At least 3 objective functions should be considered 
in the fitness function: the TP rate, the FP rate and the number of 
classifiers. In order to simplify the fitness function, we    combined 
the   TP  and  the  FP rates in   a  simple measure :   TP/FP .   This  
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Table 1. Comparison of the results obtained from the best channel 
and the proposed MCS method.  

Subject TP best FP best TP MCS FP MCS 

AB1 59.25 4.60 64.29 1.28 

AB2 61.50 3.47 66.37 0.59 

AB3 63.63 11.08 63.57 5.71 

AB4 56.10 11.41 61.28 9.05 

measure is maximized by maximizing the TP rate and minimizing 
the FP rate. Then a lexicographic approach [9] was used for multi-
objective optimization of the structure of the system. Very briefly, 
the objectives are ranked according to their priorities before 
optimization. The objective with the highest priority (TP/FP) is 
used first when comparing the members of the population and the 
individuals are ranked in a single-objective fashion. Any ties are 
resolved by comparing the relevant individuals again with respect 
to the number of classifiers. The parameters and operators of the 
GA include, tournament-based selection (tournament size =3), 
uniform crossover, uniform mutation, the size of the initial 
population: 40 (random initialization), the size of the population 
20. The number of evaluations was set to 1500. Also if for more 
than 10 consecutive generations, the amount of improvement in the 
best solution found so far is less than 1%, the algorithm is 
terminated. No tuning is performed on the GA parameters. 
     

4. RESULTS 

The results obtained for 4 subjects are shown in Table 1. As seen 
in this table, the proposed method yields a considerable 
improvement in the performance of the system (see columns 4 and 
5) compared to the single best performing channel (see columns 2 
and 3). The number of selected channels varied from 5 to 11 for 
different subjects. 
     The results show that for the first two subjects, by using the 
MCS scheme, the FP rates approach an acceptable level such that 
the system can be used in a practical application. For the other two 
subjects, although the performance of the system is improved (in 
terms of increasing the TP rate and/or decreasing the FP rate), yet 
for a practical system further improvement is desired.  
     It should be mentioned that the quality of the templates 
generated for the first two subjects, were visually much better than 
the templates derived for the last two subjects (perhaps the latter 
subjects were not as engaged as the first two subjects during the 
experiments). The amount of artifacts was also a factor which 
resulted in the reduction of the available IC trials for the last two 
subjects (especially for Subject AB4).  

5. CONCLUSION 

In this paper, a multiple classifier system (MCS) is used for 
improving the performance of an ABI system. In this scheme, the 
spatial information of multiple EEG channels is used for building 
independent classifiers. A genetic algorithm was then used to 
select the best MCS configuration.

     Since this scheme deals with each channel separately, one of its 
advantages is its modularity. The other advantage of this scheme is 
that it is not necessary to design a complicated classifier based on a 
high-dimension feature vector generated by the data of all 
channels. It is only sufficient to build classifiers with moderate 
performance. The reduction in the dimension of the feature vector 
and the simplicity of the design are among the other advantages of 
using the proposed. The main advantage of using this scheme over 
the filtering selection approaches is to avoid the uncertainty of 
having features which may not work well together (in our scheme, 
all channels can potentially contribute to the classification 
performance of the system). The main advantage over the wrapper 
feature selection methods is that there is no need to train the 
classifiers for every feature subset. Once the classifiers are trained 
on each channel separately, they are treated as black boxes and 
their outputs are then combined based on majority voting scheme. 
Finally, the results in Table.1 shows great improvements in the 
performance of an ABI system when evaluated over the datasets 
for 4 able-bodied subjects compared to the performance of best 
channel. This suggests that by using a MCS method, the results 
reported in [5] and [6] may be improved further. 
     Future works include exploring more complicated feature 
extraction and feature classification methods in order to build up 
more powerful expert systems for each channel. We should also 
explore different cost functions for summarizing the confusion 
matrix. Using a GA for selection of the threshold of classifiers is 
also an area that is worth exploring. Finally, it would be interesting 
to test the performance of the system over continuous EEG data 
and ultimately during an online ABI experiment. 
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