
ABSTRACT 

The low-frequency asynchronous switch design (LF-ASD) is a 
direct brain interface (BI) that detects the presence of a specific 
finger movement in the ongoing EEG. Asynchronous interfaces 
have the advantage of being operational at all times and not 
only at specific system-defined periods. In this paper, we 
present the design of a 3-state asynchronous BI for the 
detection of two different movements from the ongoing EEG. 
The proposed 3-state asynchronous BI detects right and left 
hand extensions. Using data collected from two able-bodied 
individuals, it is shown that the error characteristics of the new 
system in detecting the presence of movement are significantly 
better than the 2-state LF-ASD, with true positive rate increases 
of up to 22.4% for false positive rates in the 1-2% range.  An 
average performance of 61.5% was achieved in differentiating 
between left and right hand movements.  

1. INTRODUCTION 

Over the past decade, several research groups have developed 
direct brain interface (BI) systems as possible alternative 
communication and control solutions for individuals with 
severe disabilities.  For a review of the field, see [1]. BI 
technology aims at mapping the user’s cortical activity 
associated with an intentional control (such as attempted finger 
movements) directly to application-specific control signals. 
Thus, control of various devices such as a neural prosthetic is 
made possible by cognitive processes only, in other words BI 
systems bypass traditional interface pathways which cannot be 
used by individuals with severe disabilities. 

In developing a non-invasive BI system, the 2-state Low 
Frequency-Asynchronous Switch Design (the LF-ASD) was 
first introduced as a BI for asynchronous control applications 
[2]. Unlike synchronous BI systems, an asynchronous one is 
operational at any time and not at specific system defined 
periods. The LF-ASD seeks to recognize the movement related 
potentials (MRPs) related to finger flexion movements in the 
EEG signal. As an asynchronous BI, it is activated only when a 
user intends control (Intentional Control (IC) state). It 
maintains an inactive state output when a user is not meaning to 
control the device (i.e., the user may be idle, thinking about a 

problem, or performing some other action). This state of the 
brain is called the No Control (NC) state.  

In this paper, we propose a 3-state asynchronous EEG-based 
BI system. Unlike the 2-state LF-ASD which detects the 
presence of a finger flexion from ongoing EEG, the 3-state BI 
design aims at detecting two different movements. While a 2-
state LF-ASD can provide the user with the option to execute 
only one command (e.g. turn right), a 3-state asynchronous BI 
would give the user two command options (e.g. turn right or 
turn left). This has the advantage of allowing the user to 
activate more devices or giving him/her more flexibility in 
controlling a device (e.g. turn right or turn left).  

The performance of a two-state asynchronous BI system is 
evaluated using true positive (TP) and false positive (FP) rates. 
For the evaluation of a 3-state asynchronous BI, the TP and FP 
rates are not enough and one needs to report the 33×
confusion matrix of the classifier. A confusion matrix, used to 
evaluate the performance of a classifier, shows the predicted 
versus the actual classes of data. In a 3-state asynchronous BI, 
one needs to detect two different movements from the 
continuous EEG. This implies that the output can be in one of 
three states of NC, movement I (IC1), or movement II (IC2).  

The previous design of the 2-state LF-ASD aimed at 
detecting an attempted right finger flexion. Recent studies with 
the 2-state LF-ASD have demonstrated an average true positive 
(TP) rate of 64.7% when the false positive (FP) rate is 2% [3]. 
Despite these encouraging results, our experience to date 
indicates that these error rates are too high for most practical 
asynchronous control applications. In the process of designing a 
three-state BI, we thought it is prudent to investigate the 
movements (as the neurophysiologic sources of activating the 
BI) that may generate stronger MRP patterns in the EEG. If so, 
the detection of such patterns would be easier and may yield 
improvements in the performance of the system. 

Many studies by the neurophysiologic research community 
that explore the effects of different movements on EEG have 
been conducted. These studies show that the movements that 
involve more parts of the body (e.g. hand movement) or 
movements that need more effort (e.g. finger extension) 
generate stronger patterns in the ongoing EEG compared to 
other movements (e.g. natural finger flexion) [4,5,6]. At the 
same time, it has been reported that right and left movements 
(regardless of what the movement is) generate patterns in 
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different locations of the brain [7]. Thus, we decided to pick 
two movements that a) involve more parts of the body, b) need 
more effort to execute, and c) generate patterns in different 
locations of the brain. Specifically, right hand and left hand 
extensions are used. These two movements may generate more 
discriminative patterns during the movement than finger 
flexions. If that is the case, then using these movements would 
improve our BI’s performance in detecting the presence of a 
movement. These two specific movements have not been 
studied before in the context of a BI system. 

This paper reports on the preliminary evaluation of a 3-state 
asynchronous BI that aims at detecting right and left hand 
extension movements in an asynchronous manner. We used two 
detectors to detect the presence of the left or right hand 
movements from the ongoing EEG. The first detector 
determines whether or not a movement is present and the 
second one determines whether the right hand extension or the 
left hand movement is executed. 

The performance of the design is evaluated using EEG 
recordings of right and left hand extension movements of two 
able-bodied individuals. The goal of this paper is two fold: the 
first is to evaluate the performance of the system in detecting 
the presence of the new set of movements. The second is to 
introduce a design of a 3-state asynchronous BI.  

In Sections 2 and 3 of this paper, the experimental paradigm, 
the latest design of our BI system and the evaluation method 
are presented. The results and conclusions are followed in 
Sections 4 and 5, respectively. 

2. EXPERIMENTAL PARADIGM 

The EEG data used in this study were recorded from 15 mono-
polar electrodes positioned over the supplementary motor area 
and the primary motor cortex (defined with reference to the 
International 10-20 System at F1, F2, F3, F4, Fz, FC1, FC2, 
FC3, FC4, FCz, C1, C2, C3, C4, and C5). Electro-oculographic 
(EOG) activity was measured as the potential difference 
between two electrodes, placed at the corner and below the 
right eye. The ocular artifact was considered present when the 
difference between the EOG electrodes exceeded an operator 

defined threshold. All signals were sampled at 128 Hz. 
The subjects used in this study consisted of two able-bodied 

subjects. Both subjects were male, right handed and 28 years 
old on average. Subjects were seated 150 cm in front of a 
computer monitor. The data were collected while the subjects 
were performing a guided task.  At random intervals of mean 7 
seconds, a target window was displayed on the subject’s 
monitor. A box moves from the right side to the left side of the 
screen. When the box reached the target window, the subject 
tried to activate the custom-made switch by extending his right 
or left hand. An arrow, pointing to left or right on the moving 
box shows the subject whether to move his right or left hand. 
For each subject, an average of 150 trials from each movement 
was collected in two sessions at the same day.  

3. STRUCTURE OF THE PROPOSED ASYNCHRONOUS 
BRAIN SWITCH DESIGN 

Fig. 1 shows the block diagram of our proposed design. This 
design includes two major blocks: a) Detector I which 
determines whether a movement is performed or not, and b) 
Detector II which determines whether the movement is right 
hand or left hand extension. The details of both detectors are 
explained as follows. 

Fig. 2 shows the structure of Detector I [2]. Detector I uses 
features extracted from the 0-4Hz band in six bipolar EEG 
channels (defined with reference to the International 10-20 
System at F1-FC1, Fz-FCz, F2-FC2, FC1-C1, FCz-Cz, and 
FC2-C2). After amplification, a low-pass FIR filter (0-4Hz) is 
used to decrease the interference with the features in the high-
frequency band.  

Previous studies show that when a movement is performed, a 
bipolar pattern similar to the one shown in Fig. 3 is generated in 
the ongoing EEG [2]. A feature extraction method based on the 
one employed in [2] is implemented. It generates large feature 
values when there is such a pattern in the spontaneous EEG. 
The delay parameters (

jiji and,,, ββαα ), shown in Fig. 3, 

determine the shape of the pattern that needs to be detected. 
Thus, these delay parameters need to be properly determined so  
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Fig. 1.  Structure of the new 3-state asynchronous BI design 
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Fig. 2.  Structure of Detector I, where KLT = Karhunen-Loève Transform, and 1-NN = 1-Nearest Neighbour. 
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Fig 3. Description of delay terms ( jiji ,,, ββαα ) 

as to detect the presence of a specific movement. In this study, 
the same delay parameters used in the original design of the 
LF-ASD are used. Specifically, iα was set to 36 and jα was set 

to 16. For simplicity reasons the delays of all channels were 
equally set and 

jiandββ  were set to zero. The procedure of 

feature extraction is repeated for each of the six bipolar 
channels.  The   resulting   feature  vector  is  a  six-dimensional 
vector, with each dimension reflecting the value of the feature 
in each channel. 

The Karhunen-Loève Transform (KLT) component is used to 
reduce the 6-dimensional feature vector to a 2-dimensional 
feature vector. A 1-NN (1-nearest neighbour) classifier is used 
as the feature classifier. Finally, a moving average and a 
debounce block are used to further improve the classification 
accuracy of Detector I by reducing the number of false switch 
activations (for details, see [2] and [3]). Detector I classifies the 
input patterns, at every 1/16th of a second, to one of the two 
classes, No Control (NC) or Intentional Control (IC) states. 

Studies show that cortical activation related to movement 
preparation and execution desynchronizes the Mu (8-12Hz) 
rhythm of the EEG. This is known as event related 
desynchronization (ERD) [7]. ERD of a hand movement is 
more prominent over contralateral sensorimotor areas during 
motor preparation and extends bilaterally after movement 
initiation [7,8]. However, some studies show that the frequency 
band of ERD patterns varies from subject to subject [9]. 
Detector II contains a feature extraction block which calculates 
the power spectral density (PSD) features of the EEG.  
Specifically, Welch’s Periodogram method [10] is used to 
extract the PSD features. Note that two different designs of 
Detector II are evaluated. The first design extracts the 
difference between PSD features of C3 and C4 electrodes in the 
Mu (8-12Hz) band. The second design extracts subject specific 
ERD frequency bands that lead to more discrimination between 
the two classes of left and right movements. Specifically, we 
employ the stepwise linear discriminant analysis (LDA) method 
[11] to select the subject specific ERD frequency bands. For 
both designs, window lengths of 128 samples with 90% overlap 
were used to extract the features. A 1-NN (1-nearest neighbour) 
classifier is used as the feature classifier. To generate 
codebooks for the 1-NN classifier, the k-means algorithm [12] 
with 3 vectors per class is used to generate initial clustering of 
each class. This is followed by Learning Vector Quantization 

(LVQ3) [12] to find the final codebook. Finally, if Detector I
detects a movement in the ongoing EEG, Detector II classifies 
the input patterns to one of the two classes of right hand 
movement (IC1) or left hand movement (IC2).  

3.1. Evaluation 

For the evaluation of the system, approximately 40% of the 
data were used to train the classifier and the rest were used for 
evaluation. Instead of reporting the whole 33×  confusion 
matrix, we report the performance measures that are important 
for our application. Thus, the ability of the subjects to control 
the BI system was performed by evaluating the performance of 
each detector. Two measures, described below, were used.  

The first measure reports a) the percentage of correct 
movement detection (regardless of which movement is 
performed) during IC states (true positives, TPs) and b) the 
percentage of false switch activations during NC states (false 
positives, FPs). Specifically this measure reflects the 
performance of Detector I. A TP was identified if the BI system 
was activated at least once in a time window spanning 0.25 
seconds before and 0.5 second after the expected time of the 
movement, a method similar to that employed in [13]. FPs were 
assessed in the periods before the box reached the target and 
after the end of the target window (as explained in Section 2). 
Periods during which ocular artifacts occurred were not 
evaluated.  

The second measure which shows the performance of 
Detector II, reports the confusion matrix of Detector II. 
Detector II differentiates between right and left hand 
extensions.  

4. RESULTS 

The performance of Detector I in detecting the presence of left 
and right hand movements from the background EEG is shown 
in Table 1. The performance of Detector I is compared to the 
previous design (LF-ASD) for a debounce period of 16 (as used 
in previous studies [3]). In Table 1, we show the TP rates at 
fixed FP rates of 1% and 2% for the two designs. While, the 
latest design of the 2-state LF-ASD detects finger flexions from 
spontaneous EEG, Detector I detects left and right hand 
movements from spontaneous EEG. The results show that 
Detector I outperforms the latest design [3] of the 2-state LF-
ASD by approximately 21% for both subjects.  

Table 2 shows the performance of Detector II. Specifically, 
the confusion matrix of the classifier of Detector II when the 
FPs of Detector I were fixed at 2%, is reported. The confusion 
matrix is reported for two settings of Detector II: 1) PSD 
features extracted from traditional Mu band, and 2) PSD 
features extracted in subject specific frequency bands using 
stepwise LDA. As an example, for subject 1 and for the case 
that the Mu band features are used, 64% and 54% of the right 
and left hand movements are correctly classified. On average, 
the differentiation rate between right and left hand extensions 
using traditional Mu band PSD features and subject specific 
frequency bands are approximately 55.7% and 61.5%, 
respectively. Using subject specific frequency bands improves 
the performance of the system by approximately 5.8%. 
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Table 1. TP rates at fixed FP rates of 1% and 2% for the latest LF-
ASD and Detector I.  

Latest LF-ASD Detector I 
TP (%) 

Improvement at 

TP (%) at  TP (%) at  
Subject 

FP=1 % FP=2% FP=1% FP=2%
FP=1% FP=2%

Subject 1 41.2 64.7 58.3 83.6 17.1 18.9 

Subject 2 41.2 64.7 69.0 84.4 24.8 19.7 

Average 41.2 64.7 63.6 84.0 22.4 19.3 

Table 2. Confusion matrix for discrimination between left and right 
hand movements. The values are estimated for FP rate of    

Detector I set to 2%.   

Confusion matrix (%) 
Subject 

Mu band 
features 

Subject specific 
frequency bands 

Subject 1 ⎥
⎦

⎤
⎢
⎣

⎡

5446

3664
⎥
⎦

⎤
⎢
⎣

⎡

5941

3466

Subject 2 ⎥
⎦

⎤
⎢
⎣

⎡

5347

4852
⎥
⎦

⎤
⎢
⎣

⎡

6040

3961

Fig. 4. Truncated ROC curves for the latest LF-ASD (Dashed line 
with circles) and our proposed design for subject 2 (Solid line).  

Fig. 4 shows the receiver operating characteristic (ROC) 
curves of Detector I for two cases: 1) the latest LF-ASD design 
[3], and 2) our proposed hand-movement-based BI design for 
subject 2. As we are interested in lower FP rate levels, only 
those FP values below 5% are shown in the ROC curves. As the 
figure show, for every fixed FP rate level, our proposed BI 
system generates much better TP rates than the previous design. 

5. CONCLUSIONS 

In conclusion, the error characteristics of the system in 
detecting the presence of hand movements are significantly 
better than the previous system which aimed at detecting a 
single finger movement. The true positive rate increased by 
approximately 21% for false positive rates in the 1-2% range.  

The performance of the proposed asynchronous BI system in 
differentiating between the left and the right hand movements 
was approximately 55.7% and 61.5% for the two Mu band 
features and subject specific frequency band features, 
respectively. It is also shown that the use of subject specific 
frequency bands yield 5.8% better discrimination between right 
and left hand movements in average. Although the results of 
differentiating between right and left hand movements are 
promising, more improvements are needed. The use of different 
feature extraction methods, self-learning classification schemes, 
selection of proper electrode locations and evaluating the 
performance of the system on a larger subject pool are in the 
scope of our future directions.  
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