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ABSTRACT

We conceptualize a new signal processing strategy to better 

represent the temporal and spectral cues in speech signals for 

Hearing Aid (HA) and Cochlear Implant (CI) applications under 

severe adverse conditions. The proposed approach rests on two 

well studied methods for signal separation and noise suppression, 

namely, the denoising and function approximation capabilities of 

the wavelet transform, blended with signal subspace 

decomposition through low rank approximation. The technique 

targets suppression of “competing voice” type noises. A cost 

function is defined to obtain a “best basis” representation of the 

desired speech signal for which an inherent invariance property of 

the signal subspace is observed. This allows better separation of 

the speech-like noise in contrast to classical bandpass filtering 

currently employed in CI and HA devices. We demonstrate the 

efficiency of the proposed method in capturing the rapid dynamics 

of speech signals, while minimizing the masking effects of noise, 

in addition to improved recognition rates in normal hearing 

listeners. The technique remains to be tested on actual patients. 

1. INTRODUCTION 

Cochlear implant (CI) and Hearing Aid (HA) devices have 

undergone significant development over the past three decades due 

to continuous advances in micro- and nano-circuit fabrication, the 

concomitant development of multi-electrode arrays, and the 

accompanying development of signal processing technologies. 

Quality gains in patient performance can be assessed in Hearing 

Aid (HA) applications because the level of uncertainty in many 

individual factors is negligible. In the case of CIs, it is widely 

believed that multichannel CI devices provide the users with 

substantially better speech recognition capabilities than single 

channel implants  [1]. Nevertheless, measuring quality gains in the 

CI case is a challenging task because of the difficulty in assessing 

the significance of individual factors like neuron survival rate, 

electrode insertion depth and alignment, pre-surgical hearing and 

language skills, etc.

It is clearly established, however, that performance gains in 

both cases quickly corrode in the presence of competing speakers, 

and of transient and persistent sources of environmental noise. 

This problem remains troublesome, even in the face of remarkable 

technical advances that allow CI devices to deliver increasing 

amounts of information to the auditory nerve. As current and 

future research produces continuous technical improvement in CI 

devices, it appears that the ultimate success of CI technology will 

be persistently mitigated by the performance of the associated 

signal processing technologies under adverse conditions. 

Current signal processing techniques for HA and CIs are 

merely based on classical Band Pass filtering (BPF)  [2]. Filter-

bank techniques provide poor temporal resolution of transient 

sound events which are often critical to proper speech recognition, 

as well as poor frequency resolution if low order filters are used.  

Higher temporal and spectral resolution are needed to better 

encode the necessary temporal, spectral and acoustic cues by 

providing a compact, nonlinear, multiresolution mapping of sound 

to the auditory system. 

Some recent efforts focused independently on exploiting two 

well known methods for noise reduction, namely the wavelet 

transform as a denoising tool  [3] [4], and signal subspace 

decomposition as an optimal orthogonal noise suppression tool 

 [5] 0. However, the link between both methods has not been fully 

exploited. The objective of this paper is to introduce a novel signal 

processing strategy that relies on exploiting signal subspace 

decomposition in the multiresolution domain that provides a 

number of advantages over existing techniques, and can be easily 

tailored to improve the patient performance under severe, speech-

like, noisy conditions. Therefore, we adequately formulate a blend 

of both methods, and demonstrate that superior noise suppression 

can be obtained, besides improved temporal resolution, frequency 

specificity, and electrode channel selectivity. 

2. THEORY 

2.1. Signal Model 

Suppose that ]1[]0[ 111 Nsss  denotes the desired clean 

speech signal to be transduced through the device over a time 

frame of length N. In the presence of an unknown number P of

independent speakers, the mixture model takes the form

P

p
pmpm a

1

sx (1)

where  denotes the weight of speaker p in the mth speech 

frame. An additive noise model assumes the mth frame to be 

expressed as

mpa

mmm zxy (2)

where  denotes a zero-mean additive white noise comprising 

the thermal and electrical noise from the electronics of the 

associated HA (CI) device circuitry. Over M consecutive speech 

mz
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frames, the observations can be conveniently expressed in matrix 

form as 

ZASZXY (3)

Classical signal subspace decomposition using Singular Value 

Decomposition (SVD) can be used to spectrally factor Y as 

M
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where  denotes the ith singular value corresponding to the ith

diagonal entry in . The eigenvectors ,  span the 

subspace spanned by the columns of . The remaining 

i
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eigenvectors span the noise subspace. Since the objective is to 

isolate the principal speech signal in the observed mixture, it is 

sufficient to consider the first eigenvalue/eigenvector pair 

since  spans the row space of Y. This analysis is guaranteed to 

separate the principal speech signal provided that the desired 

signal has the largest energy. In such case, the observations are 

projected onto the signal subspace (now spanned by ) and used 

to activate the device interface.
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2.2. Subband Decomposition and Best Basis Selection

The approach outlined above has some serious drawbacks. 

First, it assumes that the mixing among multiple, consecutive 

speech frames remains stationary within the analysis window. That 

is, the desired speech signal always has higher energy than the 

competing speakers. This may not always be the case, especially in 

speech-like background noise, where the variance of the desired 

signal can be lower than that of the competing ones. In this case, 

artifacts can occur and can significantly degrade the outcome of 

the algorithm by causing spurious activation of the device. Second,

the fixed frame length does not capture the rapid dynamics of 

unvoiced sounds such as fricatives, which are crucial to proper 

speech intelligibility and recognition  [1].

To separate the desired signal, the mth frame undergoes a 

Discrete Wavelet Packet Decomposition (DWPT) up to L levels 

(  subbands) such that (2) can be expressed as 12 1LJ
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Where  denotes the DWPT of 

 in the jth  subband, and 
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jN , where Q denotes the order 

of the DWPT. In doing so, one obtains an overcomplete 

representation of the observations in the form of a dictionary of 

basis  to choose from. Similar to (3), the transformed 

observations can be expressed in matrix form as  

}{J

jjj
ZXY (6)

It is reasonable to assume that speech signals from independent 

speakers are mutually independent, as well as independent of the 

speech to be recognized. A singular value decomposition applied 

to (6) yields  

M

i

j
i

j
i

j
i

j
Y

j
Y

j
Y

j TT

1

vuVDUY (7)

The objective is thus to identify the signal and noise subspace in 

each subband. This can be efficiently carried out with a “best 

basis” approach  [7]. To adequately prune the DWPT binary tree 

obtained, a cost function has to be defined. In  [7], the cost is based 

on entropy minimization. Other criteria were proposed in the 

context of mean square error (MSE) minimization  [8]. If the cost 

of the children is less than that of the parent, the parent node is 

further split and the process repeats. The algorithm stops when all 

the dictionary of basis }{J  is exhausted, which occurs at the last 

decomposition level. The outcome is a characteristic best basis tree  

In our case, the cost function needs to be expressed in terms 

of the “features” of the parent subband that are preserved in the 

children subbands. It is reasonable to assume that the principal 

speech signal in those subbands would dominate over those of the 

competing speakers if the cost function is defined in terms of 

second order statistics. This implies that the best basis search 

would rely on identifying the dominant eigenvector that remains 

invariant in those subbands that best represent the desired signal 

temporal and spectral features. However, in the presence of 

competing voices, the desired signal may not always correspond to 

the principal eigenvector. This is particularly true if the desired 

signal undergoes temporal decay in its energy content over the 

time interval spanned by M frames, and can be easily superseded 

by the competing speakers signal energy. This can be expected 

near the start and/or the end of a given word where hearing 

impaired patients experience the foremost difficulty that greatly 

impacts their recognition capabilities. In such case, the best basis 

selection would rely on identifying the principal eigenvector of a 

given parent node and search in the eigenvectors of the children 

nodes for a similar eigenvector in a MSE error sense. If one is 

located -which may not necessarily be the dominant one- then the 

child node is marked as a good candidate for further splitting. 

Mathematically, this can be expressed as 

2
min),( Child

p
Parent
p

j p

pjCost uu (8)

where p denotes the index of the eigenvector in a given node for 

which the desired source signal p was preserved from its parent 

and }{Jp  denotes the set of best basis indices representing 

the desired signal. 

It is worth noting that our assumption of independence among 

competing speakers guarantees that the desired signal eigenvector 

 can be found among the columns of  if and only if the 

child’s wavelet basis best approximates the desired signal temporal 

and spectral content. In that context, existing techniques such as 

independent component analysis (ICA) for blind separation of 

independent speakers from mixtures are worth discussing. In the 

context of ICA, the separation is based on minimizing mutual 

information and thus is based on higher order statistics. The 

limitation in such case is the inability of ICA to separate more than 

one Gaussian source in the mixture, because the Gaussian 

distribution has maximum entropy. In our case, it is clear that the 

technique can be applied to observations containing more than one 

Gaussian source. Indeed, it is guaranteed to yield its best 

performance if the observations are a mixture of Gaussian sources 

since it exploits second order statistics in the multiresolution 

domain, thus can be shown to yield superior performance over ICA 

in this problem. We omit the details of the derivations for the lack 

of space.

Child
pu

j
YU

V ­ 890



2.3. Noise Suppression

Besides the best basis selection approach we outlined above, an 

added advantage of the proposed technique is the existence of a 

large body of literature (see  [9],  [10] for example), that 

demonstrate the denoising capabilities of wavelets in many 

different contexts. In this section, we outline the multistage noise 

suppression capabilities of the proposed technique. Noise 

components orthogonal to the signal subspace (i.e., uncorrelated 

with the speech of interest) can be directly suppressed using the 

low-rank approximation by truncating the summation in (7) as  

Tjj
i

P

i

j
i

j

ij vuY
1

~
(9)

where   denotes the dimension of the signal subspace in 

subband j. Nevertheless, some competing voice components may 

be spectrally correlated with the signal of interest and therefore 

will not be orthogonal to the signal subspace. It is obvious that 

such a realistic assumption, while inadvertently ignored in exiting 

filter bank techniques, is essential to provide a pragmatic solution 

to the problem. This assumption is tantamount to say that a special 

competing voice spectrum overlaps significantly with the signal of 

interest and can therefore involuntarily activate the stimulating 

electrode array causing degradable performance. To suppress this 

noise component, the matrix  is first whitened using the 

eigenvector matrix  obtained from (7) to yield 

jP

j
Y
~

j
U

jTjj
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This step segregates the signal and the correlated noise 

components in each subband. The matrix  is then thresholded 

by setting to zero (hard thresholding) or shrinking (soft

thresholding) all the coefficients that are below a certain threshold. 

The resulting above-threshold coefficients are used for signal 

reconstruction in HA devices or energy extraction to modulate the 

carrier pulse train activating the electrodes of CI devices. One 

possibility for setting the denoising threshold is by using universal

thresholding rule 

j
Ŷ

 [9], defined as NT jj log2 , in which  is 

the noise variance in the jth subband. For the mth frame,  can be 

estimated according to , where MAD{.} 

is the median absolute deviation.  

2
j

2
j

6475.0/}{ˆ 2 j
mj MAD y

As the number of speech frames M becomes large, it is 

anticipated that the technique captures more discriminant temporal 

and spectral features between the desired and the undesired 

signals. This can be seen by noting that increasing M augments the 

size of the eigenvector . It follows directly from equation (8) 

that this contributes largely to improved tracking capability of the 

algorithm when searching for the invariant signal subspace of the 

children subbands. In fact, the  norm criterion is known to 

provide better performance as the dimension of the vectors 

increase.

pu

2

In terms of stimulation parameters in CI applications, it is 

clearly seen that the matrices ,  comprise the combined 

temporal and spectral features needed to activate the appropriate 

electrode locations in the cochlea in accordance with the “place 

theory” 

j
Ŷ pj

 [11], thus can contribute to improved electrode channel 

specificity and minimize channel interaction  [12]. This can be 

inferred by realizing that the wavelet coefficients constituting the 

features in the matrices  are sparse, and therefore the envelope 

detection scheme currently used in CI device technology can be 

well tailored to minimize the time in which the simulation pulse 

train is turned on. The magnitude of the eigenvalue   directly 

indicates the relative energy of the signal in the jth subband and is 

used as a voice activity detector in our algorithm. This measure 

can be effectively used to pre-determine how much energy is 

needed at the input of the stimulation pulse train stage. Modulation 

of pulse trains with temporal characteristics of the coefficient 

envelopes can be directly utilized in existing stimulation 

technology.

j
Ŷ

j
p

3. RESULTS 

The technique described above was fully implemented in 

MATLAB® and tested with data obtained from the IEEE sentence 

database available in  [13]. The noisy database contains 30 IEEE 

sentences (produced by three male and three female speakers) 

corrupted by eight different real-world noises at different SNRs. 

We selected in our tests the noisy files that contain babble and 

exhibition hall noises. The samples were tested with normal 

hearing listeners consisting of two males and two females. Figure 

(1) illustrates one sample sentence for which the signal subspace 

voice activity detector indicated the presence of ‘significant’ signal 

energy. The detector is based on the magnitude of the principal 

eigenvalues that exceed a predetermined threshold. These were 

eventually used to identify the candidate subbands in which high 

energy coefficients reside. Next, the best basis selection 

mechanism was applied to identify the characteristic subbands that 

efficiently track the desired speech signal across the 

decomposition. A small interval at the start of a word is magnified 

to illustrate the negative signal to noise ratio in certain instants 

demonstrating the ability of the algorithm to separate the desired 

signal from the background babble noise. The quasi periodic 

nature of residual noise (indicated in blue) and the phase difference 

between the clean signal and the residual noise indicate that the 

noise is mostly composed of speech-like components. This can be 

clearly seen in the reconstructed spectrogram in the bottom of 

Figure 1. Another single utterance example is illustrated in Figure 

2. The performance for variable SNR for different choices of M is

illustrated in Figure 3. The results perfectly agree with our 

expectation in terms of improved recognition accuracy.         

4. CONCLUSION 

We presented a novel algorithm that combines the advantages of 

signal subspace decomposition with those of best basis selection to 

provide adaptive and dynamic allocation of frequency contents of 

a desired speech signal corrupted by competing-voice type noise. 

More compact temporal resolution is desired in the context of CI 

applications to achieve sparse activation of neuronal populations 

thus minimizing channel interaction with high-density electrode 

configurations (250µm pitch). The selectivity and specificity of the 

algorithm can be inferred by considering the variable number of 

best basis obtained in each batch of consecutive frames 
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simultaneously processed. Moreover, the scalability to an arbitrary 

number of physical electrode channels depending on the available 

technology  [13] can be readily seen by varying the order Q. The

technique remains to be tested on actual HA and CI patients.
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Figure 2: Female utterance of /two/ in the presence of 

coherent babble and vacuum cleaner noise. Notice the 

smooth transient start and end of the word in the 

reconstructed speech segment (middle panel) where the 

SNR is negative. 
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Figure 3: Recognition test scores versus SNR for normal–

hearing listeners for multiple numbers of simultaneously 

processed frames. 
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Figure 1: Sample sentence from IEEE database of speech 

corrupted by babble noise. Envelope of the eigen-based voice 

activity detector. Zoom-in on the start of the first word. 

Spectrogram of the overall sentence preserving all the spectral 

content of the principal speech
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