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ABSTRACT

Identifying clusters of neurons with correlated spiking ac-
tivity in large-size neuronal ensembles recorded with high-
density multielectrode array is an emerging problem in com-
putational neuroscience. We propose a nonparametric ap-
proach that represents multiple neural spike trains by a mixed
point process model. A spectral clustering algorithm is ap-
plied to identify the clusters of neurons through their corre-
lated firing activities. The advantage of the proposed tech-
nique is its ability to efficiently identify large populations of
neurons with correlated spiking activity independent of the
temporal scale. We report the clustering performance of the
algorithm applied to a complex synthesized data set and com-
pare it to multiple clustering techniques.

1. INTRODUCTION

One of the key issues to understand the general computational
principles underlying the dynamic interactions between pop-
ulations of neurons in systems neuroscience is to identify the
topology of the neuronal circuits that is transiently configured
to process and store information. This may be feasible by
identifying the subsets of neurons within a recorded ensemble
that collectively and cooperatively respond to external stim-
uli with possibly non-random temporal relationships among
their spiking activity patterns. This identification problem
has received attention for several decades since single elec-
trode recordings were performed to isolate pairs or triplets of
single units. Large scale ensembles of neurons became more
feasible to record with the advent of high-density microelec-
trode arrays (e.g. [1]) that enabled high resolution mapping of
neuronal activity to be obtained in a network context [2]. As a
result, large volumes of physiological and behavioral data be-
came available in the past few years that triggered numerous
neurobiological discoveries.

Traditionally, spike trains have been considered multi-dimensional
point processes due to their stochastic and dynamic nature
[3, 4]. Although a handful of probabilistic models have been
largely used to describe the likelihood of a neuron firing at
any given time , techniques for identifying functional interde-

pendencies in these large data sets remain relatively limited
to resolving correlations of a few neurons [5, 6]. These are
either time domain, frequency domain, pattern classification
or likelihood based approaches.

Generally speaking, two important aspects mitigate the
performance of these approaches in clustering spike train data.
First, nonstationarity in neuronal firing, and second, the un-
certainty in existing spike sorting techniques. The former is
problematic for many existing approaches because of the un-
derlying stationarity assumption within the analysis interval.
The later, on the other hand, generally leads to a large num-
ber of unresolved neurons that contaminate the accuracy of
clustering. Traditionally, averaging is performed across tri-
als to reduce the variability in the analysis, which unfortu-
nately makes the identification of the rapid dynamic changes
in neural representation of sensory inputs a formidable task.

The objective of this paper is to propose an unsupervised,
nonparametric clustering approach for identifying clusters of
functionally interdependent neurons from multiple single unit
activity, independent of the time scale at which they are de-
pendent. There are two main advantages of the proposed ap-
proach: First, the ability to map to a single cluster units in lo-
cal neuronal circuits that receive common inputs and respond
with relatively fast temporal synchrony, as well as units in
global circuits with extended synaptic activation that exhibit
slower temporal dependency that arise later in the response.
Second, the approach relies on the wavelet transform as a pre-
processing tool before actual clustering is performed. Besides
the superior capability of wavelets in modeling nonstationary
signals [7], it is considered a natural extension to the wavelet-
based spike sorting algorithm developed recently by the third
author [8] in which large margins of spike sorting errors from
previous techniques were efficiently remedied.

2. THEORY

Suppose we have array of M electrodes that records P spike
trains within the discrete interval T = [t1, . . . , tN ]. The ob-
served raw data is an M × N matrix that can be modeled as

Y = AS + Z (1)

V ­ 8851­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



where A ∈ R
M×P denotes the mixing matrix that expresses

the array response to P single units, S ∈ R
P×N denotes the

P spike trains, and Z ∈ R
M×N denotes a zero-mean additive

noise component. A scale space array model can be obtained
from (1) by expressing the data matrix across multiple time
scales by means of the discrete wavelet transform (DWT) [7]
up to J scale levels, i.e.,

Yj = ASj + Zj , j = 0, 1, . . . , J (2)

where spike trains in each scale level are represented by the
matrix Sj . Our objective is to identify groups of functionally
interdependent neurons given the scale representation of the
sorted neuronal spike trains {Sj, j = 1, . . . , J}.

2.1. The Mixture Point Process Model

Inferring correlation between any given pair of neurons in ex-
isting methods usually assumes that the interval over which
correlation is assessed remains fixed for both neurons. Such
assumption does not take into account the fact that rapid mod-
ulation of a neuron’s firing rate may trigger slow modulation
of rate function of another neuron. The converse is also true
when neuronal local synchrony is inhibited by slow wave lo-
cal field potentials or global unit firing activity over relatively
longer periods of time. In order to capture both the short term
and the long term correlation, we propose a non-parametric
mixture point process model. We assume each of the P neu-
rons may belong to any of K clusters. Each cluster repre-
sents neuronal elements that exhibit all types of short and long
range temporal interdependency. We also assume that each
neuron can belong to more than one cluster. This implies that
a neuron can belong to a short rapid synchronized population
as well as a slow asynchronous population in response to both
local and global inhibition/excitation from other populations.

Let the function fp(t) denote the firing rate of a neu-
ron spike train p, and fp = [fp(1), . . . , fp(N)] denote the
sampled version of fp(t) within the discrete interval T =
[t1, . . . , tN ] . Let {Fk, k = 1, . . . , K} denote an underly-
ing unknown “base” rate function of each cluster. Then, for
neuron p, its firing rate function can be expressed as

fp =
K∑

k=1

apkFk (3)

where apk describes the degree of membership of neuron p to
cluster k. The spike train sp can be modeled as the sum of the
sampled firing rate fp plus an independent error term i.e.,

sp = fpδT + zp (4)

where δT represents the bin width of the spike train, and zp

represents the estimation error incurred in the approximation
of the true rate function fp(t) in a minimummean square error
sense.

2.2. Scale-Space Representation

Let W (j) denote the lumped matrix operator of a discrete
wavelet transform at time scale j, then the spike train at level
j, denoted s

j
p, can be expressed as

s
j
p = W

(j)
sp

By substituting from (3) and (4), we have

s
j
p =

K∑
k=1

apkF
j
kδT + W

(j)
zp (5)

where F
j
k represents the k-th cluster base rate function esti-

mated at time scale j. The sampled cross correlation between
neurons p1 and p2 at time scale j is determined as

cj
p1p2

=
1

N

N∑
n=1

sj
p1

(n)sj
p2

(n)

Using (5), we have

E[cj
p1p2

] =
(δT )2

N

K∑
k=1

ap1kap2k(Fj
k)T

F
j
k + E[(zj

p1
)T

z
j
p2

]

=
1

N

K∑
k=1

ap1kap2ke
j
k + εj

p1p2
(6)

where e
j
k = (Fj

k)T
F

j
k(δT )2 and εj

p1p2
= E[(zj

p1
)T

z
j
p2

]. When
noise terms of two neurons p1 and p2 are loosely correlated,
εj
p1p2

will be small, and therefore the pairwise correlation be-
tween p1 and p2 is mainly determined by ap1k’s and ap2k’s,
the degree of membership of the neurons in each cluster. More-
over, the dependence of the sample correlation on ek

j , the en-
ergy of each cluster at different time scales, plays an essential
role in identifying the appropriate time scale at which any two
neurons are correlated.

2.3. Assessing Pairwise Correlation in Scale Space

Let the pairwise correlation matrix of the neurons in the k-th
cluster be denoted by Ck ∈ R

P×P . Then, the correlation
of neurons at the j-the time scale, denoted by C

j , can be
expressed as:

C
j =

K∑
k=1

Cke
j
k + ∆j (7)

where ∆j
p1p2

= εj
p1p2

. To reduce the uncertainty in estimating
time scale correlation using cluster correlation, we use princi-
pal components to suppress the error term ∆j . In particular,
we construct a block diagonal matrix T ∈ R

(P×J)×(P×J)

that has the j-th P × P block as C
j , i.e.,

T =

⎡
⎢⎢⎢⎣

C
0

C
1

. . .
CJ

⎤
⎥⎥⎥⎦ (8)
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With {(λi,ui), i = 1, . . . , P × J} as the eigenvectors and
eigenvalues of matrix T, we then reconstruct matrix T by
only using its dominant eigenvectors using the low rank ap-
proximation

Tp1p2
=

Q∑
q=1

λq|c
q
p1p2

| (9)

where cq
p1p2

denotes the correlation between neurons p1 and
p2 in the direction of the eigenvector uq . Each entry Tp1p2

provides a similarity measurement between neuron p1 and p2,
which will be used to form the graph representation for spec-
tral clustering.

2.4. Spectral Clustering in Scale-Space

The above steps outline the basic preprocessing needed to
map the neuronal spike trains to a scale-space graph repre-
sentation using adequately defined similarity measures. This
representation allows using a powerful unsupervised cluster-
ing approach drawn from Machine Learning [9]. Briefly, a
spectral clustering algorithm views the problem of identify-
ing clusters of strongly correlated objects as a graph partition
problem. In particular, each object, in our case a neuronal
spike train, is represented as a vertex in a graph. Any two ob-
jects are connected by an undirected edge whose weight is the
similarity between the two objects. With the graph represen-
tation, a minimum cut algorithm is applied to identify clusters
of strongly related objected and only edges of small weights
are removed. In order to allow each neuron to belong to mul-
tiple clusters, we use ”soft” memberships. In particular, we
use apk to represent the probability for the p-th object to be
in the k-th cluster. Then, the minimum cut problem is to find
the set of probabilities {apk} that maximizes the following
objective function:

L =
K∑

k=1

∑P

p1=1

∑P

p2=1 ap1kap2kwp1p2∑P

p1=1

∑P

p2=1 ap1kwp1p2

(10)

An efficient bound algorithm [10] can be used to optimize the
objective function in equation (10). The final cluster member-
ships are derived from {apk} by assigning each object to the
cluster with the largest probability, i.e.,

k∗
p = argmaxk∈{1,...,K}apk (11)

Finally, to apply the probabilistic spectral clustering in scale
space, we set wp1p2

= Tp1p2
as determined from (9).

3. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm on a simulated data set
with pre-defined relationships among neuronal elements. This
simulation consisted of 120 neurons divided into 4 clusters of

(a) (b)

Fig. 1. (a) Basis firing functions, and (b) the number scheme
for Wavelet transform tree

30 neurons each. Neurons within a cluster were functionally
interdependent but were independent of neurons outside the
cluster. Every cluster was assigned a base rate function Fk

that was distinct for each of the four clusters. These function
are illustrated in Figure 1(a). Within each cluster, firing rate
functions fp were generated for all neurons belonging to that
cluster according to the following relationship

fp(n) = αpFk

(
n − τp

σp

)
+ γp (12)

where αp, τp, δp, and γp were randomly generated parameters
for each neuron. In this simulation, it was assumed that for
apk = 1 when neuron p belongs to the k-th cluster and 0
otherwise (i.e., no overlap between clusters). A spike train sp

was obtained as a realization of a Non Homogenous Poisson
Process with rate fp.

A discrete wavelet transform representation of the spike
trains was obtained up to eight decomposition levels. We used
the Haar wavelet basis in our experiment. The correlation
of neurons on different time scales is illustrated in Figure 2,
following the numbering scheme of Figure 1(b). For visual
clarity, spike trains belonging to one cluster were numbered
consecutively. Hence, a cluster appears as a continuous band
of 30 rows or columns. It is clearly observed that the clus-
ters have distinct timescale correlation structures as evident
from the representations across multiple levels. For example,
cluster 2 is strongly represented at time scales corresponding
to levels “4d” and “5d”, while cluster 3 is best represented
at time scales corresponding to levels “7d”, “8d”, and “8a”,
respectively. Furthermore, the projection of correlation ma-
trix on different principle eigenvectors, i.e., cq

p1p2
in (9), is

illustrated in Figure 3. It is clear that PCs beyond the sixth
component do not possess any significant energy.

The clustering error of the proposed algorithm for this
simulation is only 2.5%, or only 3 neurons out of 120 were
incorrectly clustered. To put these results into perspective,
they were compared to those of the k-means and Bayesian
clustering and listed in Table 4. Given that each neuron spike
train is represented by a large number of data points, a princi-
ple component analysis is applied to reduce the dimensional-
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Fig. 2. Correlation matrix across multiple time scales for
8-Haar wavelet transform. The number scheme of Wavelet
transform is illustrated in Figure 1(b).

Fig. 3. Dominant 9 principal components of the augmented
matrix T.

ity before the k-means and the Bayesian clustering algorithms
are applied.

4. CONCLUSION

We presented a novel approach for analyzing multiple spike
trains in large-size neuronal ensembles. The technique relies
on scale-space spectral clustering, in which neurons exhibit-
ing functional interdependencyacross a multitude of time scales
will be clustered together. This intrinsic feature is of cru-
cial importance to short-term and long-term dependency typ-
ically encountered in ensemble neural recordings in multi-
ple brain structures that inherently characterizes the distrib-
uted processing mechanism of the nervous system. Further-
more, unlike pairwise, fixed bin-width correlation techniques,
the spectral clustering works with the distance/similarity in-
formation independent of the temporal scale at which neu-
rons might be correlated, which allow for sophisticated dis-
tance/similarity measures (e.g., kernel function), especially

Number Of Features K-Means Bayesian
5 25.8% 43.0%
10 25.8% 48.3%
20 46.6% 60.0%
40 65.8% 60.0%

Table 1. Clustering errors for K-Means and Bayesian Algo-
rithm

when the firing rate functions are nonlinearly related.
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