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ABSTRACT
To explore the three-base periodicity often found in protein-

coding DNA regions, we introduce a DNA model based on

three deterministic states, where each state implements a finite-

context model. The results obtained show compression gains

in relation to the single finite-context model counterpart. Ad-

ditionally, and potentially more interesting than the compres-

sion gain on its own, is the observation that the entropy asso-

ciated to each of the three states differs and that this variation

is not the same among the organisms analyzed.

1. INTRODUCTION

There is a steady demand for efficient methods able to reduce

the storage space taken by the impressive amount of genomic

data that are continuously being generated, and to investi-

gate their structure. Although this is a paper on DNA data

compression that describes a new DNA-specific compression

method, its goals go beyond compression. We seek to bet-

ter understand and model specific regions of the DNA data,

the protein-coding zones. It is known that these DNA re-

gions possess specific properties, different from those of non-

coding parts. Particularly, they are generally more difficult

to compress, because the main feature used by most DNA

compressors, the occurrence of sequence repeats, is not so

frequent in these zones [1]. However, there is a characteristic

of protein-coding regions that has not been yet exploited for

compression: The three-base periodicity [2].

The aim of this paper is to explore the three-base peri-

odicity property of protein-coding regions in the context of

data compression. To achieve this we propose a model com-

posed of three states. Each of the models is selected peri-

odically, according to the three-base period, and each state is

implemented using a finite-context model. The comparison of

this cyclically varying three-state model with the single finite-

context model counterpart shows that it is able to to better

capture the statistics of the data. We have also found that the

entropy of the three states differs, and that the variation is not

the same among the organisms analyzed, a fact that may have

independent interest.
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2. DNA COMPRESSION METHODS

The first compression method designed specifically for DNA

sequences is Biocompress [3]. It explores the occurrence of
complemented inverted repeats, and switches between LZ com-

pression and transparent mode. Biocompress-2 introduced
a third mode of operation, based on a second order finite-

context arithmetic encoder [4].

Rivals et al. proposed another compression technique based
on exact repetitions, Cfact, which relies on a two-pass strat-
egy [5, 6]. Contrarily to Biocompress, Cfact does not explore
any particularity of DNA sequences and hence it can be con-

sidered a general purpose compression algorithm.

The idea of using repeating sub-sequences as a means of

achieving compression was also exploited by Chen et al. [7,
8]. One version of the algorithm, GenCompress-1, used only
replacement operations. The next version, GenCompress-2
was also able to perform deletion and insertion operations

in the sub-sequence. Both schemes appear to show identi-

cal compression performance, which seems to indicate that

replacements should be enough.

A further modification of GenCompress led to a two-pass
algorithm, DNACompress, relying on a separated tool for ap-
proximate repeat searching, PatternHunter, [9]. Besides pro-
viding additional compression gains, DNACompress is con-
siderably faster than GenCompress.
Before the publication ofDNACompress, a technique based

on context tree weighting and LZ compression was proposed

[10]. It provided a slight compression gain over GenCom-
press [10], but the computing time needed for large sequences
showed to be prohibitive [9].

The paradigm of exact matching was addressed recently

by Manzini et al. [11]. The aim was a fast, although com-
petitive, DNA encoder. One of the key problems of com-

pression techniques based on sub-sequence matching is the

time taken by the search operation. Manzini et al. addressed
this drawback by proposing a solution based on fingerprints.

Basically, in this approach, the possibility of matching small

sub-sequences is waived in exchange for increased speed.

Tabus et al. proposed a DNA sequence compression method
based on normalized maximum likelihood discrete regression

for approximate block matching [12].
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3. THE NEW THREE-STATE MODEL

Most existing DNA compressors emphasize finding good ex-

act/approximate repeats or inverted complements. In our opin-

ion, other potentially important aspects, such as the particular

characteristics of protein-coding regions, deserve equal atten-

tion.

In this paper we seek to explore the three-base periodicity

often found in protein-coding regions [2]. This periodicity is

useful to locate the protein-coding regions [13, 14], and mo-

tivated the development of fast algorithms for calculating the

spectral coefficient of interest [15].

The three-base periodicity suggests an underlying statis-

tical model driven by three different, although related, infor-

mation sources. To test this conjecture, we use a setup based

on three states, each a finite-context model, and where the

switching between states follows the three-base periodicity.

Consider an information source that generates symbols,

s, from an alphabet A. At time t, the sequence of outcomes
generated by the source is xt = x1x2 . . . xt. A finite-context

model (see Fig. 1) of an information source assigns prob-

ability estimates to the symbols of the alphabet, according

to a conditioning context computed over a finite and fixed

number,M , of past outcomes (order-M finite-context model)
[16]. At time t, we represent these conditioning outcomes
by ct = xt, xt−1, . . . , xt−M+1. The number of condition-

ing states of the model is |A|M , dictating its complexity (or
model cost).

t+1xt−4x
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t+1P(x = s | c )t
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bit−stream

CAGAT... AA C T ...
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Fig. 1. Finite-context model: The probability of the next out-
come, xt+1, is conditioned by theM last outcomes.

In practice, the probability estimate of the next outcome

xt+1 being s ∈ A is obtained from

P (xt+1 = s|ct) =
n(s, ct) + δ∑

a∈A
n(a, ct) + |A|δ

.

In our case δ = 1, and n(s, ct) is the number of times that in
the past the information source generated symbol s having ct

as the conditioning context. These counters are updated each

time a symbol is encoded. The context template is causal,

and the decoder is able to reproduce identical probability es-

timates without side information.

Figure 2 shows the model used in this paper. It differs

from the finite-context model of Fig. 1 by the inclusion of

three internal states. Each state is selected periodically, ac-

cording to a three-base period. Each state comprises a finite-

context model, similar to the one in Fig. 1.
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Fig. 2. Three-state model, exploiting the three-base periodic-
ity of protein-coding regions.

With this model, the probabilities depend not only on the

M last outcomes, but also on the value of t mod 3. Note that
although the model relies on the codon structure of protein-

coding regions, it does not require the knowledge of the cor-

rect reading frame. But if a particular codon position is cho-

sen to start the model, the corresponding reading frame should

be maintained, or the statistics will become mixed.

4. EXPERIMENTAL RESULTS

The reported results were obtained using data from the ffn
files found in ftp.ncbi.nlm.nih.gov/genomes . We

included data from Haemophilus influenzae, Escherichia coli
K12, Schizosaccharomyces pombe, Saccharomyces cerevisiae
and Arabidopsis thaliana. To avoid undesirable interferences,
the files were checked for genes containing spurious symbols

or having a length other than a multiple of three.

Table 1 presents the compression results obtained using

four coding approaches: The three-state finite-context model,

the single-state finite-context model, DNACompress [9] (de-
noted by DnaC) and Manzini’s method Dna3 [11]. For each
sequence, the optimal context depthM was used.
The results show that the three-state model is always bet-

ter than the single-state finite-context model, confirming the

V  878



Table 1. Compression results, in bits per base (bpb), obtained for Haemophilus influenzae, Escherichia coli K12, Schizosac-
charomyces pombe, Saccharomyces cerevisiae and Arabidopsis thaliana. For the three-state model, columns “bpb0”, “bpb1”
and “bpb2” indicate the compression rates attained by each of the three states (corresponding to their respective sub-sequence,

i.e., to one third of the whole sequence), whereas the “bpb” column indicates overall compression rate. Columns “M” indicate
the order of the finite-context model, which was always the best possible. Columns “DnaC” and “Dna3” show compression
results using, respectively, DNACompress and Manzini’s Dna3 method.

Haemophilus influenzae
Reference Sequence Bases Three-state Single-state DnaC Dna3

M bpb0 bpb1 bpb2 bpb M bpb bpb bpb
GI:16271976 — 1505 271 4 1.918 1.834 1.684 1.812 5 1.889 1.902 1.895

Escherichia coli K12
Reference Sequence Bases Three-state Single-state DnaC Dna3

M bpb0 bpb1 bpb2 bpb M bpb bpb bpb
GI:49175990 — 4083 231 5 1.897 1.898 1.750 1.848 6 1.917 1.920 1.913

Schizosaccharomyces pombe
Reference Sequence Bases Three-state Single-state DnaC Dna3

M bpb0 bpb1 bpb2 bpb M bpb bpb bpb
GI:19113674 Chr-I 2 996 109 4 1.961 1.884 1.820 1.889 4 1.939 1.918 1.921
GI:19111836 Chr-II 2 399 394 4 1.962 1.887 1.818 1.889 4 1.940 1.915 1.916
GI:19075172 Chr-III 1 169 991 3 1.961 1.889 1.833 1.895 4 1.943 1.925 1.930

Saccharomyces cerevisiae
Reference Sequence Bases Three-state Single-state DnaC Dna3

M bpb0 bpb1 bpb2 bpb M bpb bpb bpb
GI:50593113 Chr-I 143 157 2 1.937 1.882 1.909 1.911 3 1.954 1.884 1.910
GI:50593115 Chr-II 605 184 3 1.936 1.869 1.886 1.897 3 1.942 1.912 1.918
GI:42759850 Chr-III 217 332 2 1.946 1.874 1.908 1.911 3 1.951 1.918 1.923
GI:50593138 Chr-IV 1 129 605 3 1.931 1.856 1.882 1.890 4 1.936 1.846 1.853
GI:7276232 Chr-V 391 086 3 1.935 1.872 1.894 1.901 3 1.947 1.883 1.894
GI:42742172 Chr-VI 183 702 2 1.938 1.863 1.904 1.904 3 1.949 1.932 1.939
GI:50593213 Chr-VII 784 707 3 1.935 1.861 1.882 1.893 3 1.939 1.897 1.902
GI:50882583 Chr-VIII 402 792 3 1.938 1.873 1.896 1.903 3 1.946 1.907 1.915
GI:6322016 Chr-IX 310 041 3 1.938 1.869 1.900 1.903 3 1.947 1.933 1.942
GI:42742252 Chr-X 557 103 3 1.935 1.866 1.892 1.899 3 1.943 1.907 1.914
GI:50593424 Chr-XI 478 620 3 1.935 1.855 1.893 1.895 3 1.940 1.938 1.942
GI:42742286 Chr-XII 784 695 3 1.936 1.862 1.893 1.898 3 1.942 1.863 1.872
GI:44829554 Chr-XIII 693 291 3 1.934 1.859 1.889 1.894 3 1.940 1.886 1.892
GI:50593505 Chr-XIV 576 585 3 1.937 1.869 1.893 1.900 3 1.944 1.930 1.934
GI:42742309 Chr-XV 785 568 3 1.937 1.865 1.887 1.897 3 1.941 1.901 1.917
GI:50593503 Chr-XVI 687 666 3 1.937 1.862 1.887 1.896 3 1.941 1.889 1.880
GI:6226515 MT 24 429 2 1.814 1.767 1.305 1.643 3 1.747 1.466 1.511

Arabidopsis thaliana
Reference Sequence Bases Three-state Single-state DnaC Dna3

M bpb0 bpb1 bpb2 bpb M bpb bpb bpb
GI:42592260 Chr-I 9 595 494 5 1.925 1.904 1.882 1.904 6 1.939 1.725 1.743
GI:30698031 Chr-II 5 474 178 4 1.926 1.906 1.886 1.906 6 1.942 1.710 1.737
GI:30698537 Chr-III 7 183 863 5 1.925 1.904 1.886 1.905 6 1.941 1.736 1.762
GI:30698542 Chr-IV 5 572 038 4 1.926 1.905 1.888 1.906 6 1.942 1.708 1.740
GI:30698605 Chr-V 8 462 424 5 1.924 1.902 1.883 1.903 6 1.939 1.736 1.759
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known three-base periodicity of these DNA regions. The three-

state model also attained better compression results than the

state-of-the-art DNA compression techniques included in the

tests for the Haemophilus influenzae, Escherichia coli K12
and Schizosaccharomyces pombe. For the Saccharomyces cere-
visiae, the results are mixed, although for more than half of
the chromosomes the three-state model performed better. Fi-

nally, for the Arabidopsis thaliana, the three-state finite-context
model falls short in comparison to DNACompress and Dna3.

5. DISCUSSION AND CONCLUSIONS

Table 1 shows the compression gains obtained by exploring

the three-base periodicity of the protein-coding regions. For

some of the organisms, our approach outperformed the state-

of-the-art DNA compression techniques. Since DNACom-
press andDna3 rely strongly on sub-sequence repetition, as in
fact most of the DNA compression techniques do, we believe

that in those sequences repetitions are relatively rare.

The opposite also holds, i.e., the relative performance of

the three-state model decreases for sequences containingmany

repetitions, better exploited by other algorithms. This is pre-

cisely what happens with the Arabidopsis thaliana genome.
Many plant genomes show considerable amounts of repeti-

tion, and Arabidopsis thaliana is known to have extensive
gene repetition [17]. Thus, when compression performance is

the only goal, the three-state model has to be complemented

with a method able to explore these repetitive patterns.

Another interesting issue that follows from Table 1 is re-

lated to the bit-rates for the three states, and how do they com-

pare. The values denoted by “bpb0”, “bpb1” and “bpb2” in-

dicate the average number of bits required by the encoder to

represent, respectively, the first, the second and the third bases

of the codon. For the Haemophilus influenzae, Schizosac-
charomyces pombe and Arabidopsis thaliana, the first base is
the hardest to compress, then the second and finally the third.

Thus, the first base conveys the largest fraction of the codon

information.

This is not surprising, since in the genetic code most amino-

acids are represented by more than one triplet and, for some,

the third base is irrelevant. The really surprising fact is that

for all chromosomes of Saccharomyces cerevisiae the second
base seems to carry less information than the third one. More-

over, although marginally, the second base of Escherichia coli
K12 seems to carry at least as much information as the first
base. We are unable to provide an explanation for these facts,

which justify further analysis.

In conclusion, our findings indicate that the three-base pe-

riodicity found in the protein-coding regions can be explored

from the viewpoint of data compression. The compression

performance of a three-state finite-context model always be-

haves better in those regions that the single-state counterpart.

For some organisms, the performance exceeds that of state-

of-the-art DNA compression techniques. Our model opens

up the possibility of analyzing how information is distributed

among the three bases of the codon, and we found that for

the Saccharomyces cerevisiae the third base of the codon car-
ries, on average, more information than the second base, an

intriguing fact whose biological significance, if any, remains

unclear and seems worth of further study.
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