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ABSTRACT 
 

Cognitive component analysis (COCA) is defined as the process of 

unsupervised grouping of data such that the resulting group 

structure is well-aligned with that resulting from human cognitive 

activity [1]. In this paper we address COCA in the context short 

time sound features, finding phonemes which are the smallest 

contrastive units in the sound system of a language. Generalizable 

components were found deriving from phonemes based on 

homomorphic filtering features with basic time scale (20 msec). 

We sparsified the features based on energy as a preprocessing 

means to eliminate the intrinsic noise. Independent component 

analysis was compared with latent semantic indexing, and was 

demonstrated to be a more appropriate model in COCA. 

 

 

 

1. INTRODUCTION 
 

Cognitive component analysis (COCA) as a newly defined concept 

was first brought to bear in [1]: the process of unsupervised 

grouping of data such that the resulting group structure is well-

aligned with that resulting from human cognitive activity. The 

concept is related to Lee and Seung’s work on non-negative matrix 

factorization (NMF). In [2] they showed that components could be 

understood using concepts from gestalt theory: the factorization of 

an observation matrix in terms of a relatively small set of cognitive 

components leads to a parts-based object representation. In 2002, 

similar parts-based decompositions were obtained in a latent 

variable model based on non-negative linear mixtures of non-

negative independent source signals [3]. Holistic, but parts-based, 

recognition of objects is frequently reported in perception studies 

across multiple modalities and increasingly in abstract data, where 

object recognition is a cognitive process.  

The human perceptual system can model complex multi-agent 

scenery by using a broad spectrum of cues for analyzing perceptual 

input and for identification of individual signal producing agents. 

The fact motivating our interest in COCA is that representations 

found in human and animal perceptual systems closely resemble 

the theoretically optimal representations from the unsupervised 

signal separation, namely independent component analysis (ICA) 

[4, 5, 6]. This paper further discusses the generality of COCA 

based on the previous work [1, 7], and tries to answer the question: 

Are such optimal representations based on abstract 

“independence” also relevant in higher cognitive functions? 

The phoneme is the smallest contrastive unit in the sound 

system of a language. Phoneme recognition is an active research 

field in speech recognition, see e.g., [8]. In [7] phonemes have 

been investigated by one of the generic tools of COCA analysis, 

namely Latent Semantic Indexing (LSI), and generalizable 

components and structures representing some of these smallest 

units have been found, as illustrated in Fig. 1. However whether 

the generalizable structure found in this work can assist phoneme 

recognition in general, still needs to be explored. Grouping by ICA 

has been pursued earlier for several abstract data types including 

text, dynamic text (chat), images, and combinations [9, 10, 11, 12, 

13]. It was found that ICA is a more appropriate model than both 

LSI, which is too constrained, and clustering, which may in some 

instances be too flexible as a representation of text data. 

The generality of ICA makes it possible to be utilized in many 

different areas. The classical application in signal processing of 

ICA model is blind source separation (BSS). A classical example 

of BSS is the cocktail party problem (CPP), see e.g., [14]. The 

problem is to separate the voices of different speakers, using 

recordings of one or more microphones. Comparing to BSS/CPP 

which is basically using original sound signals, the ICA model in 

COCA analysis applies on homomorphic filtering features, namely 

Mel-frequency Cepstral Coefficient (MFCC). MFCCs are short-

term spectral features, and the mel-frequency warping 

transformation based on human auditive system. In COCA we are 

interested in a cognitive level, so to speak before semantics. The 

features we look for can be compared to the features a foreign 

speaker hears on entry. Sounds are recognized but without 

semantic reference. Hence, the cognitive context in our COCA is in 

the intermediate-level between source separation (low-level) and 

content recognition (high-level).  

 

2. COGNITIVE COMPONENT ANALYSIS 

 

2.1 Latent semantic indexing (LSI) 
Latent semantic indexing is the PCA applied on abstract data such 

as text [15]. It is basically a tool for dimensionality reduction and 

also can be used to find group structure in data when the signal-to-

noise ratio is high [7]. Our approach is inspired by LSI and the 

main innovation here is the active search for generalizable non-

orthogonal linear features that may be described in terms of an 

independent component generative model. 

A strong assumption in LSI is that the data have Gaussian 

distribution. Unfortunately, many real world data are nongaussian, 

instead very sparse [1, 7]. Hence LSI is often used as a tool to 

reduce dimensionality, which is post-processed to reveal cognitive 

components, e.g., by interactive visualization schemes [16]. 

 

2.2 Independent component analysis (ICA) 
ICA algorithms can estimate independent components from linear 

mixtures [17], and has applications in many real world data. Here 

we discuss some basic characteristics of mixtures and the possible 

recovery of sources. 
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Fig. 1. Scatter plot of data on latent space 

The latent space is formed by the two first principal components of the training data consisting of 

four separate utterances representing the sounds ‘s’, ‘o’, ‘f’, ‘a’. The structure clearly shows the 

sparse component mixture, with ‘rays’ emanating from the origin (0,0). The ray marked with an 

arrow contains a mixture of ‘s’ and ‘f’ analysis windows, a generalizable characteristic feature 

associated with the vowel a-like sound that opens both an ‘s’ and an ‘f’. 

 

 

First, we note that LSI/PCA is not able to reconstruct the 

mixing. PCA, being based on co-variance is simply not informed 

enough to solve the problem. To see this let the mixture be given as 
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where Xj,t is the value of j’th feature in the t’th measurement, Aj,k is 

the mixture coefficient linking feature j with the component k, 

while Sk,t is the level of activity in the k’th source. In a text instance 

a feature is a term and the measurements are documents, while the 

components can be interpreted as topical contexts.  

As a linear mixture is invariant to an invertible linear 

transformation we need to define a normalization of one of the 

matrices A, S. We do this by assuming that the sources are unit 

variance. As they are assumed independent the covariance will thus 

be trivially given as the unit matrix. LSI, hence PCA, of the 

measurement matrix is based on analysis of the covariance 
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Clearly the information in AAT is not enough to uniquely identify 

A, since if one solution A is found, any (row) rotated matrix A
~

 = 

AU, UUT = I is also a solution, because A
~

 has the same outer 

product as A. This is a potential problem for LSI based analysis. 

The ICA community has on the other hand devised many 

algorithms that use more informed statistics to locate A and thus S, 

see [17] for a recent review. 

 

3. COMPONENT ANALYSIS FOR PHONEMES 
 

The phoneme is defined as the class of sounds that are consistently 

perceived as representing a certain minimal linguistic unit in [18]. 

However phonologists have differing views of the phoneme, and 

two major ones are: in the American structuralist tradition, a 

phoneme is defined according to its allophones and environments; 

in the generative tradition, a phoneme is defined as a set of 

distinctive features [19]. An allophone is a phonetic variant of a 

phoneme in a particular language. According to the first view, the 

same phoneme can sound slightly different in different languages 

and environments. In American English approximately 40 

phonemes are in use, of which 12 are vowels. Vowels vary in 

temporal duration between 40-400msec [18].  

Four simple utterances ‘s’, ‘o’, ‘f’, ‘a’ from the TIMIT 

database [20] were used for this demonstration. The basic time 

scale of 40 msec was used (windowing with 95% overlap), since 

the speech production system is generally considered stationary for 

time intervals on the order of 20-40 msec [18]. The windows were 

represented by 16 MFCCs. The temporal development of the mel-

cepstral representation of the four utterances is presented in the 

upper panel of Fig. 4. After variance normalization we sparsified 

the energy based coefficients by zeroing windows of normalized 

magnitudes with a statistical z < 1.4, which retains 55% energy 

from original features. LSI/PCA was performed on the sparsified 

feature coefficients to get the most variant PCA components. The 

results from Fig. 1 seem to indicate that generalizable cognitive 

components corresponding to phonemes, e.g. /æ/ from utterance ‘s’ 

and ‘f’, can be identified using linear component analysis. 

However the ray structures representing the phonemes are not 

aligned with the directions of the principal components, hence, an 

ICA scheme is required.  

Six components ICA was applied on the PCA coefficients. Fig. 

2 shows the scatter plot of sparsified features on the first two 

principal components derived from the 16 x 16 sparsified feature 

covariance matrix. The six independent sources were annotated as 

red circle, blue square, green diamond, magenta +, cyan triangle 

and black X respectively. The tags for the samples were labeled 

according to the independent sources, S matrix, from ICA analysis 

on sparsified and dimensionality reduced features. The arrows in 

Fig. 2 represent the directions of sources which are the column 

vectors of the mixing matrix A in equation (1).  The ‘ray’ structure 

with rays emanating from the origin of the coordinate system is 

evident, and each ray along the vector belongs to one independent 

source.  In order to testify  the  generalizability of  this  structure,  a 

test set with another set of utterances  ‘s’,  ‘o’,  ‘f’,  ‘a’ from TIMIT  
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Fig. 2. Scatter plot of training data 

Six components ICA performed on PCA coefficients. 

Scatter plot shows the data projected on the first two 

principal components derived from the sparsified 

features. The circle, square, diamond, +, triangle and X 

stand for 6 independent sources. The tags for the samples 

were labeled according to S matrix from ICA, and the 

arrows represent the directions of sources from mixing 

matrix A. The ‘ray’ structure with rays emanating from 

the origin (0,0) is evident. 

 

 
Fig. 3. Scatter plot of test data 

Another set of utterances ‘s’, ‘o’, ‘f’, ‘a’ was analyzed. 

The ‘ray’ structure is obvious and similar to the training 

set, emanating from the origin (0,0). 

 

was analyzed using the same setup. The results are shown in Fig. 3. 

Here we only show the direction of the first source. Later we will 

demonstrate the cognitive content of this source. 

Generalizability has been verified in another way by using 

two different implementations of ICA, namely maximum 

likelihood ICA (icaML) and the fast fixed-point algorithm for ICA 

(fastICA). IcaML algorithm is the estimation of the independent 

component as in the Infomax by Bell and Sejnowski [21] using a 

maximum likelihood formulation. Fig. 4 and 5 show the 

classification results from icaML and fastICA on training and test 

sets separately.  In the two upper panels,  the temporal development  

 
Fig. 4. MFCCs and Classification on Training set 

In the two upper panels, the temporal development of the 

mel-frequency cepstral representations of the original ‘s’, 

‘o’,  ‘f’, ‘a’ and 4 spasified ones is presented. The 

boundaries between them are clearly visible. 55% energy 

was retained after sparsification. The first independent 

sources from two ICA implementations are shown in the 

two lower panels: the vertical lines indicate the locations of 

windows belonging to the first source. Results from two 

ICA algorithms are similar. A large percentage of the 

windows locate in, approximately, windows No. 1 to No. 

133 for ‘s’, and No. 471 to No. 600 for ‘f’. It indicates the 

feature is related to the similar /æ/ sound that opens both ‘s’ 

and ‘f’.    

 
Fig. 5. MFCCs and Classification on Test set 

The two upper panels show the temporal development of 

the mel-frequency cepstral representations of the four 

original utterances and four spasified ones. 60% energy was 

left for test set. The two lower panels show the first 

independent sources from icaML and fastICA: the vertical 

lines indicate the locations of windows belonging to the 

first source. Two panels look quite similar. The similar 

scenario shown in Fig. 4 for training set happened again on 

test set, which indicates the feature is related to the similar 

/æ/ sound that opens both ‘s’ and ‘f’. However there are 

more mis-detections located outside the above ranges. 
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of the mel-frequency cepstral representations of the four original 

utterances and four sparsified utterances is presented with the 

sequence of ‘s’, ‘o’,  ‘f’, ‘a’. The boundaries between the four 

utterances are clearly visible, and the utterances show much 

similarity between the two samples (test and train), however, they 

are of quite different duration. For training set, 55% energy was 

retained after sparsification; and 60% energy was left for test set. 

The first independent sources from two ICA algorithms are shown 

in the two lower panels of Fig. 4 and 5: the vertical lines indicate 

the locations of windows belonging to the first source. It is quite 

clear that the results of icaML resemble those of fastICA. For 

training set, we notice that a large percentage of the windows 

locate in the first part of ‘s’ and ‘f’ utterances, which 

approximately from windows No. 1 to No. 133 for ‘s’, and No. 471 

to No. 600 for ‘f’. It indicates the feature is related to the similar 

/æ/ sound that opens both ‘s’ and ‘f’.  A similar scenario happened 

in test set, however there are more lines locate outside the above 

ranges. Our interpretation is the windows containing low energy 

(almost zero) have simply been classified into the first class. The 

classification has been improved while we slightly reduced the 

threshold for sparsification. However low threshold brings more 

noise, which increases the classification error. 

 

4. CONCLUSION 
 

The generality of cognitive component analysis, which is defined  

as the process of unsupervised grouping of data such that the 

ensuing group structure is well-aligned with that resulting from 

human cognitive activity, has been explored in this paper. We posit 

speech COCA in a cognitive level before semantics. In other words, 

sounds (sources) are recognizable, but without semantic reference. 

Therefore COCA is localized in the intermediate-level between 

source separation (low-level) and content recognition (high-level).  

We have studied the derived cognitive components of 

phonemes from short time homomorphic filtering features with 

energy based sparsification. ICA on short-term spectral features, 

MFCC, was compared with latent semantic indexing, and was 

demonstrated to be a more appropriate model in COCA. 

The fact that we find the ‘ray’ structure of cognitively relevant 

components by simple unsupervised learning based on sparse 

linear component analysis highlights the possibility of using 

unlabeled samples in supervised learning. 
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