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ABSTRACT

In this paper, a fast noise compensation (FNC) algorithm is

proposed for the adaptive decorrelation filtering (ADF) speech

separation system in the presence of diffuse noise. The adap-

tation of ADF is a dynamic process, making noise effects at

ADF outputs time-varying in nature. Such changing noise ef-

fects need to be tracked and adaptively removed. Under the

assumption that acoustic paths are slow in change and utiliz-

ing the filtering structure of the separation model, noise com-

pensation terms were adapted with an FFT-based fast algo-

rithm. Experiments were based on both simulated and real

recorded diffuse noises. Strong diffuse noise distracts part of

the attention of ADF to do noise cancellation while separat-

ing speech, and FNC works by forcing ADF to stay focused

on speech separation task. The proposed algorithm signifi-

cantly improved the separation performance of ADF system

in diffuse noise.

1. INTRODUCTION

Diffuse noise and interfering speech present double folds of

challenges for hands-free automatic speech recognition (ASR)

and speech communication. It is important to address ef-

fects of noise in speech separation for practical applications

of blind source separation (BSS) and independent component

analysis (ICA) techniques. Although general ideas in dealing

with noisy mixtures are cast as bias removal [1], the com-

pensation techniques and their effectiveness depend heavily

on specific separation models and application scenarios. Cur-

rently, most studies are either of theoretical nature, or focus on

easy noise conditions (e.g. [2]) or simplified mixing models

(e.g. [3]). In [4], noise subtraction was used in both cases of

sensor and real diffuse noise for convolutive BSS. However,

research efforts along this line are still insufficient, and further

development of effective online compensation algorithms are

needed for convolutive speech mixtures in real environment.

In our previous work [5, 6], the separation model of adap-

tive decorrelation filtering (ADF) [7, 8] was significantly en-

hanced for speech mixtures in acceleration of convergence

rate and reduction of steady-state filter estimation errors. For

speech mixtures contaminated by white uncorrelated noises, a

simple noise-adapted ADF algorithm [2] was proposed based

on a time domain vector formulation. In practice, diffuse

noises are not white and are highly correlated in low fre-

quency. In [9], it was shown that correlated noise deterio-

rated performance more severely, and a subspace based noise

reduction front-end was experimented to improve the work-

ing condition for speech separation, rather than compensating

ADF algorithm itself. The objective of this paper is to extend

the technique of noise-compensated ADF (NC-ADF) [2] to

speech mixtures in diffuse noise and to derive a fast online

algorithm for real-time applications.

2. ADF MODEL IN NOISE

The ADF noisy speech mixture separation system with filters,

gij = [gij(0), ..., gij(N − 1)]T , (i, j=1, 2,i �= j), is shown in

Figure 1. We formulate the I/O relations of ADF as [2]

vn = G(ỹ + ñ), (1)

where ỹ = [ỹT
1 (t), ỹT

2 (t)]T and ñ = [ñT
1 (t), ñT

2 (t)]T are

(4N −2) × 1 vectors of clean mixture and noise respectively,

with ñi = [ni(t), . . . , ni(t−2N+2)]T , ỹi = [yi(t), . . . , yi(t−
2N + 2)]T , (i = 1, 2), and the filter matrix

G =
[
[IN 0N×(N−1)] G12

G21 [IN 0N×(N−1)]

]
, (2)

is 2N × (4N − 2) with

Gij = Toeplitz
(
[gij(0),01×(N−1)]T , [gT

ij ,01×(N−1)]
)
.

(3)

The output noise effects are described by Rvnvn=Rvv+Rηη ,

where the 2N × 1 speech-only output v = [vT
1 (t),vT

2 (t)]T

and noise component η = [ηT
1 (t),ηT

2 (t)]T all satisfy the cor-

relation vector I/O relations, whose speech-only version is

rvivj = ryiyj − Gjiryiỹi − Ryjyjgij + GjiRỹiyjgij , (4)

rvivi = ryiyi − Gijryiỹj − Ryiyjgij + GijRỹjyjgij . (5)

In [2], based on minimization of the decorrelation objec-

tive functions Jij = 1
2r

T
vivj

rvivj , the positive definitive as-

sumption of Ryjvj , and approximation of cross correlation

vectors rvivj by instantaneous samples vi(t)vj(t), the basic
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Fig. 1. ADF system for noisy speech mixtures

ADF algorithm for clean mixtures [7] was derived as

gij(t) = gij(t − 1) + µ(t)vi(t)vj(t), (6)

where the step size µ(t) can be chosen based on convergence

analysis [8], or be combined with variable step size (VSS)

schemes to accelerate convergence and reduce error (e.g., [5]).

3. NOISE COMPENSATION FOR ADF

From the noise-component version of relation (4), the esti-

mate of noise contribution to ADF output cross-correlation is

r̂ηiηj = r̂ninj −Gjir̂niñi − R̂njnjgij +GjiR̂ñinjgij . (7)

As filters gij evolve, correlation characteristics of output noise

also changes, even when input noises are stationary. Compen-

sation can be done by removing noise bias from the noisy ob-

jective function Jnij = 1
2r

T
vni

vnj
rvni

vnj
. This corresponds

to subtracting the cross-correlation vector estimate r̂ηiηj (t)
from ADF adaptation as

gij(t) = gij(t − 1) + µ(t)(vni(t)vnj(t) − r̂ηiηj (t)) (8)

The difference from [2] is that here we do not simplify (7)

by the assumption of white sensor noise (uncorrelated), but

rather consider real diffuse noises with strong correlations.

Due to non-stationarity of speech, individual competing

sources are not equally excited at short time intervals. In [5],

an analysis was made on the effect of unequal excitation of

sources on ADF estimation error and a step-size scaling tech-

nique was proposed by using unequal discount factors con-

trolled by short-term output powers. It can be interpreted as a

kind of soft-decision switch that senses the relative strength of

individual sources. However, such a method is noise-sensitive

because noise-corrupted estimate of source strengths will lead

to inaccurate computation of VSS. Therefore, noise compen-

sation should also be performed for VSS.

Here we use the error-reducing VSS similar to [5] that

balances adaptation between unequally excited sources

µij(t) = µ(t) · σ̂2
vj

(t)/σ̂2
av(t), (9)

where the normalizing gain factor µ(t) was given by [8]

µ(t) = γ/
(
N(σ2

yn1
(t) + σ2

yn2
(t))

)
, (10)

with σ2
yni

(t) the short-term power of the i-th input. The aver-

age noise-free output power σ̂2
av(t) is

σ̂2
av(t) =

(
σ̂2

v1
(t) + σ̂2

v2
(t)

)
/2 (11)

The VSS compensation is done by subtracting noise power

from that of noisy ADF output

σ̂2
vj

= r̂vj (0) = r̂vnj
(0) − r̂ηj (0), (12)

with the output noise power estimated as

r̂ηj (0) = r̂nj (0) − 2gT
jir̂njni + gT

jiRninigji, (13)

which follows from the I/O relation (5) for noise.

4. FAST UPDATE OF COMPENSATION TERMS

The noise compensation terms derived above require matrix-

vector multiplications and are not suitable for real time im-

plementation. To speed up the NC-ADF, we first reduce the

update rate for compensation terms. Then, FFT-based compu-

tations of noise cross-correlation vectors are applied, utilizing

the Toeplitz structure of correlation and system matrices.

Observations on the adaptation procedure show that the

change of ADF filters is small within short time intervals (e.g.,

< 30ms). In short-term, ADF parameters can be regarded as

fixed. This approximation makes it possible to update com-

pensation terms for only every K time samples.

The output bias estimate (7) can be written as

r̂ηiηj = r̂ninj − aij − bij + cij , (14)

with
aij = Gjir̂niñi , (15)

bij = R̂njnjgij , (16)

cij = Gjid̃ij , (17)

d̃ij = R̂ñinjgij . (18)

The fast computation of aij and cij share the same structure.

Applying basic algebra to Toeplitz matrix Gji, each compo-

nent, aij(k), k = 0, ..., N − 1, of vector aij can be expressed

as the linear convolution (denoted as ∗)

aij(k) = gji(n) ∗ ξ̃a
ij(n)|n=2N−2−k, (19)

where the (2N − 1)-point sequence

ξ̃a
ij(n) = r̃nini(2N − 2 − n). (20)

Similarly, components of cij are obtained by

cij(k) = gji(n) ∗ ξ̃c
ij(n)|n=2N−2−k, (21)

ξ̃c
ij(n) = d̃ij(2N − 2 − n). (22)

The vectors bij and d̃ij also have similar structure

bij(k) = gij(n) ∗ ξ̃b
ij(n)|n=k+N−1, (23)

ξ̃b
ij(n) = r̃njnj

(|n − N + 1|), (24)

d̃ij(k) = gij(n) ∗ ξ̃d
ij(n)|n=k+N−1, (25)

ξ̃d
ij(n) = r̃ninj (N − 1 − n). (26)
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The only exception is that, unlike other N -point sequences

aij(k), bij(k), and cij(k), the length of d̃ij(k) in (25) is 2N−
1. All of them can be computed using fast convolutions based

on NF -point FFTs (NF > 2N − 1). Specially, d̃ij(k) can

actually be decomposed into two N -point sub-sequences and

be computed with two NF -point FFT-IFFT modules. In this

way, every sequence only needs to be zero-padded to length

NF , because only N -point result sequences are required in

each module. Other points with aliasing are discarded.

In practical implementation, DC-components of these vec-

tors are removed. Triangular windows of length N , w(n) =
(N − n)/N, n = 0, ..., N − 1, are also applied on both com-

pensation vector estimates and ADF adaptation vectors.

From (12), (13), and (16), the noise-free ADF output pow-

ers used in VSS compensation are estimated by

σ̂2
vj

≈ vT
nj

vnj /N − 2gT
jir̂njni + gT

jibji. (27)

For the case when K=N and FFT length NF =2N , the

computation of 2N -point FFTs can be distributed to the time

interval of length N. The complexity of fast noise compen-

sation (FNC) is O(N+log N) for each time sample, as com-

pared with the complexity O(N2) of direct NC.

5. EXPERIMENTS

5.1. Experimental Data and Setup

Speech mixtures were generated from clean sources in TIMIT

database and real acoustic impulse responses measured in a

room with reverberation time T[60]=0.3sec from two micro-

phones (13 and 15) in a circular microphone array of radius

15cm [10]. The target speech had 40 sentences from 4 speak-

ers (faks0, felc0, mdab0, mreb0) approximately 2m away,

from the microphones.

Both simulated and real recorded diffuse noises were tested.

For simulated case, noise signals were designed to be speech-

shaped by the procedure

n1(t) = β1

P1∑
k=1

a
(1)
k n1(t − k) + (1 − β1)n2(t) + ε1(t), (28)

n2(t) = β2

P2∑
k=1

a
(2)
k n2(t − k) + (1 − β2)n1(t) + ε2(t), (29)

where εi(t)’s are white Gaussian excitations, β1=0.65, β2=0.6,

P1=2, P2=3, and a
(i)
k ’s are linear prediction coefficients (LPC)

estimated from clean TIMIT data. Real diffuse noises were

recorded in a computer lab with a pair of omnidirectional

stereo microphones placed 15cm apart on a conference table

in the middle of the lab, where the air-conditioning and ven-

tilation system and 8 desktop workstations were working si-

multaneously. With stationary or slow-changing assumption,

we use the 5-second segment of noise-only data preceding the

1st speech sentence to estimate properties of input noise. Fig-

ure 2 illustrates the estimate of cross power spectra for both

types of noise.

0 2000 4000 6000 8000

20

30

40

50

60

70

frequency (Hz)

cr
os

s 
po

w
er

 s
pe

ct
ru

m
 (

dB
) real noise original (SNR=−10dB) 

simulated noise original (SNR=−10dB)

real noise preemphasized

simulated noise preemphasized 

Fig. 2. Cross power spectrum of diffuse noise
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Fig. 3. Comparison of convergence performance in real noise

(dash-dot: baseline ADF; solid: FNC-ADF)

The basic setup for ADF were N=400 and γ=0.01. Pre-

emphasis (1-z−1) was applied to mixtures to remove the 6-

dB/octave tilt of speech long-term spectrum and reduce eigen-

value disparity to achieve better convergence [6]. As a com-

mon technique in ASR, preemphasis enhances perceptually

important speech components. It also alters noise properties

at ADF input. In fact, the simulated speech-shaped noise

spectrum was flattened resulting in a loss of signal-to-noise

ratio (SNR) of approximately 3dB; preemphasis on recorded

diffuse noise retained a significant amount of coloration and

correlation, and it increased SNR by 12dB while suppressing

strongly correlated low frequency components (see Figure 2).

In the following, we evaluate SNR and target-to-interference-

ratio (TIR) results for preemphasized components, ignoring

perceptually unimportant components. For FNC-ADF, the

NC vector update rate was reduced by the factor of K=N ,

FFT length (NF ) was 1024. VSS was not applied to baseline
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original preemphsized baseline FNC-ADF

SNR(dB) SNR(dB) (v1, v2) (v1, v2)
3 (0.2,−1.3) (1.7, 2.1) (7.6, 8.6)
9 (6.2, 4.7) (3.0, 3.9) (9.7, 10.0)
15 (12.2, 10.7) (4.7, 5.6) (10.8, 10.5)
21 (18.2, 16.7) (6.3, 6.8) (11.3, 10.7)
27 (24.2, 22.7) (7.5, 7.6) (11.5, 10.7)

Table 1. Gain in TIR (dB) (simulated speech-shaped noise)

original preemphsized baseline FNC-ADF

SNR(dB) SNR(dB) (vn1 , vn2) (vn1 , vn2)
3 (0.2,−1.3) (−0.3,−1.5) (−1.4,−3.6)
9 (6.2, 4.7) (5.3, 3.4) (4.5, 2.4)
15 (12.2, 10.7) (10.8, 8.6) (10.3, 8.3)
21 (18.2, 16.7) (16.3, 14.0) (16.3, 14.3)
27 (24.2, 22.7) (22.0, 19.7) (22.2, 20.3)

Table 2. Output SNR (dB) (simulated speech-shaped noise)

ADF without noise compensation since it degraded perfor-

mance for noisy mixtures.

5.2. Convergence and Separation Performance

ADF filter estimation error during adaptation was measured

to quantify convergence performance. Using FNC-ADF, the

steady-state error was significantly reduced compared with

baseline AFD. Figure 3 gives an example for the case of real

recorded lab noise. It can be seen that, as noise levels in-

crease, the advantage of FNC-ADF over baseline becomes

more significant.

Separation performances are evaluated by the gains in TIR,

defined as TIRoutput−TIRinput. In Tables 1 and 3, the TIR

gains of FNC-ADF outperform those of the baseline for both

types of noises, at the cost of only slight decrease in SNR,

as shown in Tables 2 and 4. It is interesting to observe that

at severe conditions, e.g., for SNR=−12 dB (original), base-

line ADF actually increased SNR. This is consistant with the

analysis in [9] that in correlated noise, baseline ADF tends to

cancel out some noise. Tables 2 and 4 tell us that FNC algo-

rithm can force ADF to focus on separation, rather than noise

cancellation. Examination of ADF filter impulse responses

also verified this explanation.

6. CONCLUSIONS

The FNC algorithm significantly improved the separation per-

formance of ADF for speech mixtures in diffuse noise. Future

work will include tests to incorporate recursive tracking meth-

ods for non-stationary noises, and to apply noise reduction

post filtering methods to current technique for the improve-

ment of both system TIR and SNR.

original preemphsized baseline FNC-ADF

SNR(dB) SNR(dB) (v1, v2) (v1, v2)
−12 (0.2, 0.3) (3.1, 3.9) (7.5, 8.7)
−6 (6.2, 6.3) (4.2, 5.6) (9.9, 10.1)
0 (12.2, 12.3) (6.3, 7.7) (10.9, 10.6)
6 (18.2, 18.3) (7.7, 7.9) (11.4, 10.9)
12 (24.2, 24.3) (8.1, 8.1) (11.6, 10.9)

Table 3. Gain in TIR (dB) (real diffuse noise)

original preemphsized baseline FNC-ADF

SNR(dB) SNR(dB) (vn1 , vn2) (vn1 , vn2)
−12 (0.2, 0.3) (3.8, 2.4) (0.2,−1.8)
−6 (6.2, 6.3) (6.1, 5.9) (6.2, 4.1)
0 (12.2, 12.3) (12.3, 11.4) (12.1, 10.0)
6 (18.2, 18.3) (17.9, 16.4) (18.1, 15.9)
12 (24.2, 24.3) (23.4, 21.7) (24.0, 21.8)

Table 4. Output SNR (dB) (real diffuse noise)
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