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ABSTRACT

The post-nonlinear undercomplete Blind Signal Separation
problem is solved by a Bayesian approach in this paper. The
proposed algorithm applies the Generalized Gaussian model
to approximate the prior distribution probability and a
Maximum a Posteriori (MAP) based learning algorithm to
estimate the source signals, mixing matrix and the
nonlinearity of the mixing process. The mixing nonlinearity
is modeled by a Multilayer Perceptron (MLP) neural
network. In our proposed algorithm, the source signals,
mixing matrix and the parameters of the MLP are iteratively
updated in an alternate manner until they converges to a
fixed value. The noise variance is regarded as the hyper-
parameter which is estimated in a closed form. Simulations
based on real audio have been carried out to investigate the
efficacy of the proposed algorithm. A performance gain of
over 125% has been achieved when compared to linear
approach.

1. INTRODUCTION

Independent Component Analysis (ICA), one of the more
popular techniques employed in Blind Signal Separation
(BSS), has received comparatively more attention over the
last decade due to its simplicity and accuracy. Most of the
solutions proposed to solve the problem of BSS aims to
recover source signals from linear mixtures [1].
Nevertheless, nonlinear functions have been involved due to
their existence in real applications [2,9,10]. A simple and
effective post-nonlinear model proposed by Taleb and Jutten
[3] composed of a linear mixing matrix and one layer of
nonlinear distortion function. This model is particularly
suited for problems where nonlinearity exists at the sensors.
However, the algorithm is only applicable for nonlinear
mixtures where the number of mixtures is equal to the
number of sources.

In this paper, we consider a post-nonlinear
undercomplete system which can be mathematically
formulated as follows:

X=f(AS)+n ey
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where S and X are the source signals and mixed signals
respectively; the mixing matrix A is a rectangular matrix
with dimension N,xN, with N,>N_, f(.) represent the

. . . . T
post-nonlinear distortion function and n:[nl,...,nN]

represent Gaussian noises. The infrastructure of the model is
shown in Fig. 1

Fig. 1 Post-nonlinear undercomplete mixing model

The estimation of source signals can be implemented
through two different approaches, the generative approach
and the signal transformation approach. Generative approach
involves estimating both the source signals and the mixing
matrix, i.e. it aims to rebuild the mixing model and describe
how the mixtures were generated; alternatively, the signal
transformation approach aims to build a de-mixing system
which attempt to cancel the mixing effect on the mixtures
and subsequently recover the source signals. Both approach
have has their own merits and shortcomings. The generative
approach is able to handle more complicated cases, such as
undercomplete mixtures where the number of sources is
greater than the number of mixtures with the presence of
noise, but it requires high computational complexity.
Conversely, the signal transformation approach is simple and
easy to compute but limited to noiseless and complete
mixtures. In this paper, the generative approach is adopted
since our model addresses both noisy and undercomplete
mixtures.

The structure of this paper is organized as follows: the
estimation of the mixing matrix and the source signals are
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firstly introduced in section 2; the nonlinear mismatch
correction and noise variance estimation are presented in
section 3; the simulation result and discussion are included
in section 4 to verify the effectiveness of the proposed
algorithm.

2. BAYESIAN FRAMEWORK AND MAP BASED
ITERATIVE ESTIMATION

We introduce a Maximum a Posteriori (MAP) probability
approach which estimates the joint probability distribution
betweenS and A as follows

(S,A) :argmaXP(S,A‘X) oc arg max P(A‘X)P(S‘A,X) 2)
MAP S,A S,A

Maximizing the joint probability of S and A in (2) is
a complicated process. To simplify the maximization
process, we propose an approach where P(A|X) and

P(S|A,X) are iteratively optimized according to the
following equations:
A, =argmax P(A|X) 3)
A
SMAP = arg max P(S‘A,X) )
S

The term P(A\X) in (3) can be expressed as
P(A[X)= [P(A,S

X)dS o< In P(A) +In [P(X]A,S)P(S)dS (%)
To approximate the source, mixing matrix and noise
distribution in (5), we adopt the Generalized Gaussian

Distribution (GGD) model for its computational simplicity,
which can be mathematically represented as follows:

. (MY
p(v)_mexp[ ( ﬁaj ] ©)

where P(v) is a GGD model with the variable v, standard

deviation o and shape factor p .Under the assumption of

Gaussian noise with the same variance during mixing
process, we obtain the following

NU
P(X‘A,S) = [O_\I/HJ exp —‘

(N

To simplify the computation of the integral term in (5),
we exploit the Laplacian approximation and adopt the
assumption that the integral follows the supergaussian
distribution characterized by a sharp peak and heavy-tailed
distribution. Under this assumption, we can substitute (7)
into (5) and rewrite (5) as follows

| Ny HX-f(AS)Z o
1 1 s (®)
o lnP(A)+E(N0—NX)ln anjﬂnp(s)

_#HX—f(AS)HZ —%lndet(A(HX—f(AS)HZD
where A corresponds to the Hessian function around the

estimated S where S is estimated from (21) presented at the
end of this section.

Due to limited space, this paper will only examine the last

term A (”X - £ (AS )”2) in  detail.  Defining

H=A (”X -f (AS)"ZJ , the Hessian function becomes

H=A’ (diag (HX—f(AS)H)diag(f”(AS))—diag (f'(AS))sz ©)
= A" diag () A

where each element of H can be simply expressed as

NL)
by, = Zaikail¢i (10)
il

where ¢, = [x,- - f(z‘ams,njf”(Zamsn) — 1 as)

n=1 n=1 n=1

In the absence of nonlinearity in the mixture, (8)
reduces to its linear counterpart [4]

1 1 ~ 1
In P(A)+5(N0 —Nx)ln(zﬂanz j+ln P(S)- 207

[ (aS)f - Jnfan

with an additional term P(A) introduced by MAP.

Differentiated with respect to A, Hessian function in
(9), which distinguishes the difference of the proposed
nonlinear algorithm with its linear counterpart, is derived
based on the chain rule and the identity [5] as follows

olndetH &y ., . Ny Moo N
JA - Zzh’k](o(l’k’l)nf + Zzhlklafkaun,s/ (11D
=1 k=1 =1 k=1
2(1[./. J =k=1
] =14 j=l#k
where g(i.k.) a,-zk j=k=l
0 jEl#k

and 7/ = [ - f(Zamjf”(Zamfn) 31 Qi) Qas)
n=1 n=1

n=1 n=1
where the first term in (11) is given by
N, N, _
> gl k. iy, = 2diag (DA (A” diag(m)A) (12)
1=1 k=1
Exploiting the identity A"A" =1, we can express (12) as
follows
A*M’iih,;‘ga(i,k,z)m = A’TATZdiag(n)A(ATa'iag(ﬂ)A)_l (13)
=2A7"
The second term in (11) by
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> hila,an =diag(n){AH"A")S"

1 k=1

1=

N,
k=

- dmg(n’)<A(Mdiag(mA)’1 AT>ST a4

= diag(?]')[?]fl .. 77,?,l ]T s’
’ /’ — T~
= |:771771 : ﬂN(,nNi] s’
where <> and diag(.) denotes the diagonal value of a matrix

and the diagonalization process respectively.
Replacing (13) and (14) into (11), we obtain

dlndetH ;o Er
A m] S (15)

=247+ ':771,7717l

Combining the derivation of nonlinear part (15) with
derivation of the remaining linear parts in (8) [4], we can
express the learning rule for A as

A(t+1)=A(t) +p,AA where AA=L+N (16)
in which
dlnP(A) . (9InPES) g,
L= -A —S +1
A KX o7 a7
Ir, 5 pooalar
N=—5[rml Mo | S (18)

We denote (17) as the linear component and (18) as the
nonlinear component.

As for the estimation of source signals, we can
formulate the cost function of the proposed generative
network as

SzargmaxP(S‘A,X) (19)
S

where

1 2 :
P(S\A,X)m—273

P
sm

1 \
Skl e

|x - f(AS)

The derivative of the cost function with respect to S simply
becomes

1 , . P2
VSP(S\A,X):?ATdiag(f(AS))(X—f(AS))—%dtag(\sm\)( 's @D

Where the aim is to find an optimal solution where S
satisfies the condition VSP(S\A,X) =0 . This can be achieved

through the adaptation of S by employing a gradient-based
learning algorithm as follows:
S(t+1)=S(1) + 4V P(S| A, X) (22)

where y; is the learning rate of the source estimation.

3. MINIMIZATION OF NONLINEAR MISMATCH
AND NOISE VARIANCE ESTIMATION

Due to the lack of information on the mixture, a mismatch
exists between the initial estimation of nonlinear function in
(18) and the true function. To resolve this problem, a self-
adaptive algorithm is proposed to approximate as similar as
possible the true nonlinear function. It has been established

by the Universal Approximation Theorem [6] that for every
continuous function f(.), there always exists a Multilayer
Perceptron (MLP) which can uniformly approximate f(.) in
the form of

SUM"Y M? g)=M" tanhM?'U + B) (23)

The estimation of accuracy for § and A will
consequently degrade with the degree of mismatch of
nonlinear function f(.). Since the function f(.) is a one-to-
one mapping, the MLP indeed performs non-mixing
nonlinear mapping. Hence, this suggests a straightforward
approach for how the estimation of A, S and f(.) can be
managed. Thus, this allows us to formulate a least square
error criterion to minimize the mismatch between the true
observed signal and the estimated observed signal as

follows:

{M“),M(z),ﬁ’ } = argmin

n n n
MO MO g

N,
%, -M! tanh MDD a5, + ﬁ’n‘

) : (24)

= argmin Hxn ~M" tanhMPu, + B7)
M Mg,

where M) :[mill ------ m(l)J , MY :[mﬂzl) ------ m(ﬂ , and
B, = [ﬂ L B, J . Then the derivation of each parameter

in (24) can be written as

M" = arg min Hx” ~MY tanh M P, + 8,)
M) (25)
=-2(x,~M" tanhM " u, + B,") ) tanh(M P, + )

)

B

=argmin|y, ~M) ah VD, + 3,
M5

<[ 2D (5, M b2y, s M2, 47 [

Once the coefficients of M and g of the MLP converge, the

new estimate of nonlinear function is substituted into (16)
and (21) to obtain refined estimates of S and A .

2

2

(26)

The noise variance o, in (8) can be regarded as a

hyperparameter in Bayesian approach. Following Rajan and
Rayner[7], the estimation of &, can be derived from

arg max P(X‘ S,A,02)=0 Q27
and this gives a closed form estimate as
2
X-f(AS
(NU - N.r)

4. RESULTS OF SIMULATION AND DISCUSSION

To demonstrate the incompetence of a linear BSS algorithm
approach and the significance in the proposed algorithm of
post-nonlinear undercomplete mixtures, we compare the
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effectiveness of the proposed algorithm with the well-known
FOCUSS algorithm [8]. The noise is Gaussian distributed
and is used to perturb the sensors. The initial estimate of the
source signals are computed directly from (29)

S=A'X (29)
where A" is pseudoinverse of mixing matrix A . The noise
is Gaussian distributed and is used to perturb the sensors.
While for the initial estimated source signals, they are
computed directly from (35). In this experiment, the two
audio waves shown in Fig.2 (a) correspond to the source
signals. The source signals are transformed into three
mixtures through (1) and depicted in Fig.2 (b). The mixing
matrix is randomly generated from a Gaussian distribution.
The actual post-nonlinear process f(.) is set to tanh(.) and

the estimated nonlinear process is assumed to be ()"’ which

means there is nonlinear distortion initially. Fig.1 (c) shows
the recovered source signals by the algorithm proposed in
this paper under SNR=20dB. Comparing Fig.2 (a) with Fig.2
(c), it clearly demonstrates the close resemblance between
the original sources and the recovered source signals.

A performance index is introduced as a basis for
comparison and can be defined as:

N
L&
Pzz[l—M ,E:l | o J (29)
E[(s; = E[s;D*(5; = E[5;D)]

O el m P Je - esE]

where p; , * and |-| are the normalized cross-correlation,

complex conjugate and absolute operation respectively.
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(©) (d)
Fig.2. nonlinear undercomplete mixing using two speech
signals. (a) Two source signals; (b) Three mixtures; (c) Two
estimated source signals; (d) Performance index comparison.

Fig.2 (d) depicts the performance index under fixed
SNR=20dB. The figure shows that both performance indices
converge to a small fixed value (0.24 for post-nonlinear

algorithm and 0.52 for FOCUSS) after 500 iterations.
However, the performance of the proposed algorithm
surpasses FOCUSS algorithm by over 100% under
SNR=20dB. When SNR<5dB the presence of noise
dominates and affects the performance of both algorithms
significantly. However, a significant improvement in the
performance of the proposed algorithm is observed as SNR
increases. Furthermore, the gain in accuracy exceeds the
FOCUSS algorithm by over 125% (0.21 for the proposed
algorithm and 0.55 for FOCUSS).

5. CONCLUSION

This paper presents a novel algorithm to recover source
signals from a set of blind nonlinear underdetermined
mixtures. The algorithm is derived from a Bayesian
framework and addresses simultaneously the problem of
nonlinearity and undercomplete mixtures. Simulation results
have demonstrated the efficiency of the proposed algorithm
over linear algorithm in post-nonlinear mixtures.
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