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ABSTRACT

The performance of approximation using redundant expan-
sions rely on having dictionaries adapted to the signals. In
natural high-dimensional data, the statistical dependencies are,
most of the time, not obvious. Learning fundamental patterns
is an alternative to analytical design of bases and is nowadays
a popular problem in the field of approximation theory. In
many situations, the basis elements are shift invariant, thus
the learning should try to find the best matching filters. We
present a new algorithm for iteratively learning generating
functions that can be shifted at all positions in the signal to
generate a highly redundant dictionary.

1. INTRODUCTION AND MOTIVATION

The tremendous activity in the field of sparse approximation [1,
2, 3] is partly motivated by the potential of the related tech-
niques for typical tasks in signal processing such as analysis,
dimensionality reduction, de-noising or compression.

Given a signal s of support of size S in a space of infinite
dimensional discrete signals, the central problem is the fol-
lowing: compute a good approximation s̃N as a linear super-
position of N basic elements picked up in a huge collection
of signals D = {φk}, referred to as a dictionary :

s̃N =
N−1∑

k=0

ckφk, φk ∈ D , ‖s − s̃N‖2 ≤ ε . (1)

The approximant s̃N is sparse when N � S. The main ad-
vantage of this class of techniques is the complete freedom
in designing the dictionary, which can then be efficiently tai-
lored to closely match signal structures [4, 5, 6, 7, 8].

The properties of the signal, dictionary and algorithm, are
tightly linked. Often, natural signals have highly complex un-
derlying structures which makes it difficult to explicitly define
the link between a class of signals and a dictionary. This paper
presents a learning algorithm that tries to capture the underly-
ing structures. In our approach, instead of considering atoms
φk having the same support as the signal s, we propose to

learn small generating functions, each of them defining a set
of atoms corresponding to all its translations. This is notably
motivated by the fact that natural signals often exhibit statisti-
cal properties invariant to translation, and that using generat-
ing functions allows to generate huge dictionaries while using
only few parameters. In addition, fast convolution algorithms
can be used to compute the scalar products when using pur-
suit algorithms. The proposed algorithm learns the generating
functions successively and can be stopped when a sufficient
number of atoms have been found.

In section 2, we formalize the problem of learning gener-
ating functions, and we propose an iterative algorithm to learn
successively some adapted atoms, with a constraint on their
decorrelation. In section 3, we presents a first experiment on
the influence of this constraint on the recovery of underlying
atoms, depending on their correlation. In section 4, we show
with a second experiment the ability of this learning method
to give an efficient dictionary for sparse approximations. A
third experiment shows that this algorithm recovers the atoms
typically learned by other methods on natural images. We
conclude in section 5 on the benefits of this new approach
and list the perspectives we will consider.

2. PRINCIPLE AND ALGORITHM

Formally, the aim is to learn a collectionG = {gk}K
k=1 of real-

valued generating functions gk such that a highly redundant
dictionary D adapted to a class of signals can be created by
applying all possible translations to the generating functions
of G.

For the rest of the paper, we assume that the signals de-
noted by lower case letters are discrete and of infinite size.
Finite size vectors and matrices are denoted with bold charac-
ters. Let Tp be the operator that translates an infinite signal by
p ∈ Z samples. Let the set {Tpgk} contain all possible atoms
generated by applying the translation operator to g k. The dic-
tionary generated by G is D = {{Tpgk}, k = 1 . . .K}.

The learning is done using a training set {fn}N
n=1 of N

training signals of infinite size and but non-zero only on their

V  857142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



support of size Sf . Similarly, the size of the support of the
generating functions to learn is Sg such that Sg ≤ Sf .

The proposed algorithm learns translation invariant filters
iteratively. For the first one, the aim is to find g1 such that the
dictionary {Tpg1} is the most correlated in mean with the sig-
nals in the training set. Hence, it is equivalent to the following
optimization problem:

UP : g1 = argmax
‖g‖2=1

N∑

n=1

max
pn

| 〈fn, Tpng〉 |2 . (2)

For learning the next generating functions, the original
optimization problem is modified to include a constraint pe-
nalizing a generating function if a similar one has already
been found. Assuming that k − 1 generating functions have
been learnt, the optimization problem to find gk can be written
as:

CP : gk = argmax
‖g‖2=1

∑N
n=1 maxpn | 〈fn, Tpng〉 |2
∑k−1

l=0

∑
p | 〈gl, Tpg〉 |2

. (3)

Finding the best solution to the unconstrained problem
(UP) or the contrained problem (CP) is hard, and we propose
to decompose them into two simpler steps that are alternately
solved :

• for a given generating function g
(i)
k , find the best trans-

lations p
(i)
n ,

• update g
(i+1)
k by solving UP or CP, where the optimal

translations pn are fixed to the previous values p
(i)
n .

The first step only consists in finding the location of the
maximumcorrelation between each learning signal fn and the
generating function g.

Let us now consider the second step and define gk ∈ R
Sg

the restriction of the infinite size signal gk to its support. As
translation operator admits a well defined adjoint operator,
〈fn, Tpngk〉 can be replaced by 〈T−pnfn, gk〉. Let F(i) be
the Sf × N matrix, whose columns are made of the signals

fn shifted by −p
(i)
n . More precisely, the j th column of F(i)

is f
n,−p

(i)
n

, the restriction of T−p
(i)
n

fn to the support of gk, of

size Sg . We denote A(i) = F(i)F(i)T

.
With these notations, the second step, for the unconstrained

problem, can be written :

g(i+1)
k = argmax

||g||2=1

gTA(i)g (4)

where (.)T denotes transposition. The best generating func-

tion g(i+1)
k is the unit eigenvector associated with the largest

eigenvalue of A(i).

For the constrained problem, we want to force g
(i+1)
k to

be as decorrelated as possible from all the atoms in Dk−1.
This corresponds to minimizing

k−1∑

l=1

∑

p

|〈T−pgl, g〉|2 (5)

or, denoting

Bk =
k−1∑

l=1

∑

p

gl,−pgl,−p
T , (6)

to minimizing gT Bkg. With these notations, the constrained
problem can be written :

g(i+1)
k = argmax

||g||2=1

gTA(i)g
gTBkg

(7)

The best generating function g(i+1)
k is the eigenvector asso-

ciated to the biggest eigenvalue of the generalized eigenvalue
problem defined in eq. 7. Note that defining B1 = Id, we
can use CP for learning the first generating function g1.

The algorithm, which we call MoTIF, for Matching of
Time Invariant Filters, is summarized in Algorithm 1.

Algorithm 1 Principle of the learning algorithm (MoTIF)

1: k = 0, training signals set {fn}
2: while not enough generating functions do
3: k ← k + 1, i ← 0
4: Bk ← ∑k−1

l=1

∑
p gl,−pgl,−p

T

5: while no convergence reached do
6: i ← i + 1
7: for each fn, find p

(i)
n = argmaxp | 〈fn, Tpg

(i)〉 |, by
locating the maximum correlation between fn and
g(i),

8: A(i) ← ∑N
n=1 f

n,−p
(i)
n

f
n,−p

(i)
n

T

9: find g(i+1)
k = argmax||g||2=1

gT A(i)g
gT Bkg

, that is the
eigenvector associated to the biggest eigenvalue of
the generalized eigenvalue problem A(i)g = λBkg.

10: end while
11: end while

The unconstrained algorithm has been proven to converge
in a finite number of iterations to a generating function lo-
cally maximizing the unconstrained problem (eq. 2) and we
observed on numerous experiments that the constrained al-
gorithm typically converges in few steps to a stable solution
independently of the initialization.

3. SYNTHETIC EXPERIMENTS

The first experiment consists in exploring the ability of the al-
gorithm to recover correctly a set GO = {gO

k }K
k=1 of known

V  858



generating functions referred to as the original set of func-
tions. Starting from this set, a sparse coefficient vector c is
randomly created. It defines a signal :

s =
N−1∑

k=0

ckφk, φk ∈ D = {{Tpg
O
k }, k = 1..K}.

The training set {fn} is obtained by taking the maximal
number of non overlapping parts of the signal s. The size
of the patches fn is such that supp(fn) = 2 ∗ supp(gO

k ) − 1,
where supp denotes the size of the support. These patches are
used by the MoTIF algorithm to learn a set G of translation in-
variant generating functions. A function g O

i from the original
set GO is said to be recovered if maxg∈G |〈gi, g〉| > δ.

We created 3000 original sets of generating functions made
of 3 Gabor atoms with random normalized frequency between
0 and 0.5. The size of their spatial support is 16. Each of these
generating functions was present 10 times in a signal of size
1600 with a random amplitude between 0 and 1. The number
of patches fn used was 298. For each set of generating func-
tion, we run the algorithm 10 times on 10 different signals.

Figure 1 illustrates the recovery ability of the MoTIF al-
gorithm. It presents the mean number of generating functions
recovered as a function of the minimal correlation of the orig-
inal set GO computed as mini,j maxp |〈Tpg

O
i , gO

j 〉|, which
means that the correlation between other atoms can only be
higher. The equivalence limit δ for two generating functions
was fixed to 0.8.

For the same settings, in more than 2 cases out of 3, the
first generating function found by MoTIF is one from the orig-
inal set. To recover the next atoms, the constrained optimiza-
tion problem (CP) has to be solved. Thus, the next func-
tions are constrained to be as uncorrelated as possible with
the past found functions, which is clearly not the case when
the original set of functions is highly coherent. This leads to
a poor rate of recovery when the minimal coherence is higher
than 0.6. Recovering is easier when dealing with rather un-
correlated set of functions. Indeed, for very small values of
the minimal correlation, in mean, nearly two functions out
of three are recovered. In between these two extreme cases
(minimal coherence between 0.2 and 0.6), the algorithm’s be-
havior is rather constant and recovers more than half of the
functions.

4. EXPERIMENTS WITH 1D AND 2D NATURAL
DATA

The second experiment studies the ability of a dictionary learnt
on real data to sparsely approximate signal of the class of the
learning data, compared to a classical dictionary like Gabor
atoms. The class of signals we consider is music. The first
half of a signal has been used for learning whilst the second
part is kept to test the approximation ability. The learning
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Fig. 1. Mean number of recovered generating functions as a
function of the minimal coherence of the reference dictionary.

part has been divided into 10422 patches of size 4095 in or-
der to learn generating functions with a spatial support of size
2048. The learnt set GL has a cardinality of 50. The refer-
ence set GR of generating functions is made of multi-scale
Gabor atoms with 50 different normalized frequencies spread
between 0 and 0.5 and 5 different scales. Thus the cardinality
of GR is 250.

To compare the approximation performances of both sets,
we used Matching Pursuit [1] with the dictionaries DL and
DR generated respectively by GL and GR. Figure 2 presents
the obtained results. The length of the test signal is 50000
and 500 iterations of Matching Pursuit were performed for
the approximation. Thus, this approximation is more than 100
times sparse. Even if the cardinality of the learnt dictionary
is 5 times smaller than the reference dictionary, the decay of
the mean square error (MSE) is faster. The learnt dictionary
is adapted to the considered signal and contains meaningful
features present in the test signal.

The third experiment is done on a set of natural images.
The two-dimensional patches are reshaped in vectors for the
computation. The size of the training signals fn is 31×31 pix-
els, whereas the generating functions are 16× 16 images. We
learn 19 generating functions with the constrained algorithm.
They are shown on figure 3. The generating functions are
spatially localized and oriented. They are oscillating in a dif-
ferent direction from the orientation, at different frequencies
depending on the atoms. The generating functions #2 to #5
are mainly high frequency due to the decorrelation constraint
with the first atom. Whereas the first generating functions are
Gabor atoms, the second series contains line edge detectors,
and the last are curved edge detectors. The two first categories
were already observed in [4] and the third ones complete the
range of natural features.
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Fig. 2. Approximation abilities of a learnt set of generating
functions regarding a reference set of generating functions
containing multi-scale Gabor atoms.

Fig. 3. 19 generating functions learnt on natural images.

5. CONCLUSIONS

We have presented a new method for learning a set of trans-
lation invariant functions adapted to a class of signals. At
every iteration, the algorithm produces the waveform that is
the most present in the signals and adds all its shifted ver-
sions to the dictionary. A constraint in the objective function
forces the learnt waveforms to have low correlation, such that
no atom is picked several times. The main drawback of this
method is the fact that the few generating functions following
the first one are mainly due to the decorrelation constraint,
more than the attachment to the signal. Despites this, the
constrained algorithm seems to capture the underlying pro-
cesses quite well, notably when they are really decorrelated.
The learnt dictionaries show ability to sparse decompose the
corresponding signals. On real data like images, the learnt
generating functions are edge detectors (spatially local and

oriented) as previously found by Bell and Sejnowski. Some
extensions of this algorithm are considered, as learning mul-
tichannel atoms on multichannel signals. Using this type of
learning, some applications in multichannel source separation
can be expected. Another extension, based on the properties
of the inner product, is to replace the translation invariance by
the invariance to a whole set of transformations that admit a
well defined adjoint (e.g. translations + rotations for images).
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