
A TIME-FREQUENCY CORRELATION-BASED BLIND SOURCE SEPARATION METHOD
FOR TIME-DELAYED MIXTURES

Matthieu Puigt, Yannick Deville

Laboratoire d’Astrophysique de Toulouse-Tarbes
Observatoire Midi-Pyrénées - Université Paul Sabatier Toulouse 3
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ABSTRACT

We propose a time-frequency (TF) blind source separation (BSS)
method suited to attenuated and delayed (AD) mixtures, inspired
from a method that we previously developed for linear instantaneous
mixtures. This approach only requires each of the uncorrelated sources
to occur alone in a tiny TF zone, i.e. it sets very limited constraints
on the source sparsity and overlap, unlike various previously re-
ported TF-BSS methods. Our approach is based on TIme-Frequency
CORRelation (hence its name AD-TIFCORR). It consists in iden-
tifying the columns of the (filtered permuted) mixing matrix in TF
zones where it detects that a single source occurs. We thus identify
columns of scale coefficients and time shifts. This method is espe-
cially suited to non-stationary sources.

1. INTRODUCTION

Blind source separation (BSS) consists in estimating a set of
�

un-
known sources from a set of � observations resulting from mix-
tures of these sources through unknown propagation channels. Most
of the approaches that have been developed to this end are based
on Independent Component Analysis [1]. More recently, several
methods based on time-frequency (TF) analysis have been reported
[2, 3, 4, 5, 6]. In particular, some methods based on ratios of TF
transforms of the observed signals have been proposed [3, 4]. Some
of these methods, i.e. DUET and its modified versions [4], apply
to attenuation and delay (AD) channels but require the sources to
have no overlap in the TF domain, which is quite restrictive. On
the contrary, only slight differences in the TF representations of
the sources are requested by the linear instantaneous (LI) TIFROM
method that we proposed in [3]. This feature is also provided by the
LI-TIFCORR method that we introduced in [5]. We here propose
a novel TF-BSS method which is inspired from this LI-TIFCORR
method, but suited to AD mixtures. We thus avoid the restriction of
the DUET method concerning the sparsity of the sources in the TF
domain, while addressing the same class of mixtures.

2. PROBLEM STATEMENT

In this paper, we assume that
�

unknown sources signals � � � � 
 are
transferred through AD channels and added, thus providing a set of�

mixed observed signals � 
 � � 
 . This reads

� 
 � � 
 � ��� � � � 
 � � � � � � � 
 � 
 � �  ! ! ! � %
(1)

where � 
 � are real-valued strictly positive constant scale coefficients
and � 
 � are integer-valued time shifts. We here handle the scale/filter
indeterminacies inherent in the BSS problem by extending to AD
mixtures the approach that we introduced in [5]. We therefore con-
sider an arbitrary permutation function ' � ! 
 , applied to the indices(

of the source signals, which yields the permuted source signals� ) + � , � � 
 . We then introduce scaled and time-shifted versions of the
latter signals, equal to their contributions in the first mixed signal,
i.e. � -� � � 
 � � � / ) + � , � ) + � , 1 � � � � / ) + � , 
 5 ! (2)

The mixing equation (1) may then be rewritten as� 
 � � 
 � ��� � � � 
 / ) + � , � ) + � , 1 � � � 
 / ) + � , 
 5 � ��� � � 7 
 � � -� � � � 9 
 � 
 

(3)

with ; 7 
 � � = > @ A C D F= G @ A C D F9 
 � � � 
 / ) + � , � � � / ) + � , (4)

The Fourier transform of Eq. (3) readsK 
 � M 
 � ��� � � 7 
 � O Q � R S > D U -� � M 
 � �  ! ! ! � ! (5)

This yields in matrix formK � M 
 � X � M 
 U - � M 
 (6)

where U - � M 
 � Z U -� � M 
 \ \ \ U -� � M 
 ] ^ andX � M 
 � ` 7 
 � O Q � R S > D b � % ( �  ! ! ! � ! (7)

In this paper, we aim at introducing a new method for estimatingX � M 
 .
3. A NEW TIFCORR METHOD FOR AD MIXTURES

3.1. Time-frequency tool and assumptions

As stated in Section 1, we recently proposed [5] a LI TIme-Frequency
CORRelation-based BSS method, that we therefore called
”LI-TIFCORR”. Starting from this method, we here develop a ver-
sion which is extended to AD mixtures (hence its name AD-TIFCORR).
The TF transform of the signals considered in that approach is the
Short-Time Fourier Transform (STFT) defined as:c � � % M 
 � d e�f h � Q e j � � - 
 l � � - � � 
 O Q � R f h

(8)
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where � � � � � � 	 is a shifted windowing function, centered on time� .

 � � � � 	 is the contribution of the signal

�
� � 	 in the TF window

corresponding to the short time window centered on � and to the an-
gular frequency � . Our approach uses the following definitions and
assumptions.
Definition 1 A TF ”analysis zone” is a series of adjacent TF win-
dows � � � � 	 . More precisely, a ”constant-frequency (resp. constant-
time) analysis zone” is a series of � time-adjacent (resp. � �
frequency-adjacent) analysis windows. We denote it � � � � 	 (resp.� � � � 	 ).
Definition 2 A source is said to ”occur alone” in an analysis zone
if only this source has a TF transform which is not equal to zero ev-
erywhere in this analysis zone.
Definition 3 A source is said to be ”visible” in the TF domain if
there exist at least one analysis zone where it occurs alone.
Assumption 1 i) Each source is visible in the TF domain and ii) in
all considered analysis zones, the variance of at least one source is
nonzero.
Note that Assumption 1-i) is a very limited sparsity constraint. As-
sumption 1-ii) is only made for the sake of simplicity: it may be
removed in practice, thanks to the noise contained by real record-
ings, for the same reasons as in [3].
Assumption 2 Over each analysis zone � � � � 	 , the TF transforms of
the sources are uncorrelated.

3.2. Overall structure of AD-TIFCORR

The AD-TIFCORR method aims at estimating the mixing matrix� � � 	 defined in (7), i.e. the scale coefficients � � � and the associated
time shifts � � � , with � � 	 � � � �

and 
 � � � � � �
( � � � yields

� � � � � and � � � � � : see Eq. (4)). It is composed of 4 main stages,
preceded by a pre-processing stage:

1. The pre-processing stage consists in deriving the STFTs � � � � � 	 of the mixed signals, according to Eq. (8).

2. We detect single-source constant-frequency analysis zones and
identify the columns of scale coefficients � � � in these zones
as described in Section 3.3.

3. We detect single-source constant-time analysis zones and then
identify the columns of time shifts � � � as explained in Sec-
tion 3.4.

4. We couple the above-identified scale coefficients and time
shifts, using the method proposed in Section 3.5.

5. In the combination stage, we eventually compute the output
signals. They may be obtained in the frequency domain by
computing 
 � � 	 � � # $ � � 	  � � 	 (9)

where

 � � 	 � % 
 $ � � 	 ' ' ' 
 ( � � 	 * + is the vector of Fourier

transforms of the output signals. The time-domain versions of
these signals are then obtained by applying an inverse Fourier
transform to


 � � 	 .
3.3. Detection of single-source zones and identification of � � �
As stated above, the BSS method that we here introduce first in-
cludes a detection stage for finding single-source constant-frequency
analysis zones. The frequency-domain mixture equations correspond-
ing to Eq. (1) read

 � � � 	 � (,� . $ 1 � � 3 # � 5 6 7 9 : � � � 	 � � � � � � � � (10)

This relationship between the observations and sources remains al-
most exact when expressed in the TF domain if the time shifts � � � are
small enough as compared to the temporal width of the windowing
function � � � 	 used in the STFT transform. In this paper, we assume
that this condition is met and therefore that the STFTs of the obser-
vations can be expressed with respect to the STFTs of the sources
as  � � � � � 	 � (,� . $ 1 � � 3 # � 5 6 7 9 : � � � � � 	 � � � � � � � � (11)

For any couple of signals � $ � � 	 and � � � � 	 , we define the cross cor-
relation of the (non-centered version of the) TF transforms of these
signals over the considered constant-frequency analysis zone � � � � 	
as

� � ? � � � � � � 	 � �
�

�,
� . $ � $ � � � � � 	 � �� � � � � � 	 �

(12)

where the superscript
�

denotes the complex conjugate. The corre-
sponding correlation coefficient reads

� � ? � � � � � � 	 � � � ? � � � � � � 	� � � ? � ? � � � � 	 � � � � � � � � � 	 � (13)

Applying the general proof of [5] to the mixtures expressed in Eq.
(11) directly shows that a necessary and sufficient condition for a
source to occur alone in the TF analysis zone � � � � 	 is

� �  ?  7 � � � � 	 � � � ! � � 	 # � # � � (14)

In practice, for each analysis zone, we compute the mean
� �  ?  7 � � � � 	 �

of
� �  ?  7 � � � � 	 �

over all � ( 	 # � # �
). We then order all analy-

sis zones according to decreasing values of
� �  ?  7 � � � � 	 �

. The first
zones in this ordered list are then considered as the ”best” single-
source zones.
If a source : ) � � � � 	 occurs alone in the considered TF window� � � � � + 	 then Eq. (11) and (12) yield

, � � � � � + 	 � �  7  ? � � � � + 	�  ?  ? � � � � + 	 � 1 � )
1 $ ) 3 # � 5 A 6 7 - # 6 ? - B � � � � 3 # � 5 C 7 /

(15)
with � � � and � � � defined by Eq. (4) and 0 � D � 
 	 . Since we as-
sumed all mixing coefficients 1 � ) to be real and positive, all resulting
scale coefficients � � � are also real and positive. The modulus of the
parameter value

, � � � � � + 	 provided in Eq. (15) is thus equal to � � � .
The identification stage for the scale coefficients � � � therefore con-
sists in successively considering the first analysis zones of the above
ordered list. For each such zone, the estimates of � � � associated to a
column of � � � 	 are set to the values of

� , � � � � � + 	 �
. A new column of

� � � is kept if its distance with respect to each previously found col-
umn of � � � is above a user-defined threshold 2 $ . The identification
procedure ends when the number of columns of scale coefficients
thus kept becomes equal to the specified number

�
of sources to be

separated.

3.4. Detection of single-source zones and identification of � � �
In this section, we describe the detection and identification stages for
estimating the time shifts � � � . This approach is based on ratios of
mixtures in the TF domain, defined as

3 � � � � � 	 �  � � � � � 	 $ � � � � 	 � 4 (� . $ 1 � � 3 # � 5 6 7 9 : � � � � � 	4 (� . $ 1 $ � 3 # � 5 6 ? 9 : � � � � � 	 � (16)

V ­ 854



If a source � � � � � � � occurs alone in the considered TF window� � � � � � � � � then, denoting � 	 
 � � � � , we get

� � � � � � � � � � � 	 � � �

� � �
� � � � � � � 	 � � � 	 � 	 � � � � � � � � � � 
 � � (17)

Thanks to expression (17) of the parameters � � � � � � � � � � � in single-
source analysis zones, a natural idea for estimating the time shifts! � � � consists in taking advantage of the phase of � � � � � � � � � � � 1. We
consider independently each time position � � � associated to TF win-
dows and for each such position, we unwrap the phase of � � � � � � � � � � �
over all associated frequency-adjacent TF windows. If � � � � � � � oc-
curs alone in the analysis zone � � � � � � � and we consider the un-
wrapped phase � � � � � � � � � � � of � � � � � � � � � � � in this zone, due to (17)
we have

" � � � ! � � � 	 � � � � � � � � � � � � � � � � � � � � � � �
�

(18)

where � � � � � � � � � is an unknown integer. Eq. (18) shows that the
curve associated to the variations of the phase � � � � � � � � � � � with re-
spect to � � � in a single-source analysis zone � � � � � � � is a line and
that its slope does not depend on the value of � � � � � � � � � and is equal
to " ! � � � . This therefore provides not only a means for identifying! � � � , with no phase indeterminacy, but also a way to detect constant-
time single-source zones.
The overall detection and identification method that we propose for
the parameters ! � � � then operates as follows. We successively con-
sider all constant-time analysis zones � � � � � � � . In each such zone� � � � � � � , for each observed signal with index % , we consider the

� � points which have two coordinates, resp. defined as the fre-
quencies � � � and the corresponding values � � � � � � � � � � � of the un-
wrapped phase of the parameter � � � � � � � � � � � . We determine the
least-mean square regression line and the mean-square error of the
points � � � � �

� � � � � � � � � � � � with respect to their associated regression
line. The estimates of the tentative parameters ! � � � are set to the
integers which are the closest to the opposite of the slopes of the re-
gression lines. The best single-source zones are those which yield
the lowest mean-square errors. These zones may be then be used
in various ways for eventually identifying the parameters ! � � � , e.g.
by ordering these zones according to increasing values of their mean-
square error or by using clustering techniques. They eventually yield
a set of column vectors. Each of these vectors contains the values! � � � , which correspond to all observations with indices % and to the
source with index 
 � � � � which occurs in the considered analysis
zone. A final stage should therefore be added to our approach, in
order to couple each column of parameters ! � � � to the column of
parameters � � � corresponding to the same source. This stage is de-
scribed hereafter.

3.5. Coupling the parameters � � � and ! � � �
3.5.1. Alternative identification method for the parameters � � �
In Section 3.4, we introduced a method for detecting constant-time
single-source analysis zones and we showed how the phase of the
parameters � � � � � � � in such zones may be used to identify the pa-
rameters ! � � � . We here note that the moduli of these parameters in
these zones also make it possible to identify the parameters � � � � : Eq.
(17) shows that, at any frequency � � � of such a zone, the modulus of� � � � � � � � � � � is equal to � � � � . The latter parameter may therefore

1One could think of using the phase of � � 
 � � � � � instead (see Eq. (15)).
However, this approach failed in our fi rst tests, presumably due to the averag-
ing over the temporal zone � used in � � 
 � � � � � instead of the single temporal
window � � � in � � 
 � � � � � � � � .

be identified as the mean value of the modulus of � � � � � � � over a
constant-time single-source analysis zone.
The value thus obtained is denoted � � � � � below, in order to distin-
guish it from the value � � � provided by the method that we intro-
duced in Section 3.3. The alternative approach that we propose in
this subsection is attractive because each considered analysis zone
yields the parameters � � � � � and ! � � � corresponding to the same source.
It therefore inherently provides a solution to the coupling of these
types of parameters. However, our experimental tests showed that
the parameter value � � � � � thus obtained estimate less accurately the
actual mixture parameters than the values � � � that we obtained in
Section 3.3. We therefore introduce a modified approach which takes
advantage of both types of parameters hereafter.

3.5.2. Coupling the parameters � � � and � � � � � � � ! � � � �
Taking advantage of all above-defined principles, we now introduce
a method for eventually coupling the parameters � � � and ! � � � . This
method consists in:

1. determining the parameters � � � as explained in Section 3.3,

2. independently determining the couples � � � � � � � ! � � � � as ex-
plained in Sections 3.4 and 3.5.1,

3. and then mapping the parameters ! � � � towards the param-
eters � � � thanks to the parameters � � � � � . This is achieved as
follows. The above identification of the parameters � � � yields'

columns of such parameters, each associated with a dif-
ferent source. In the detection of constant-time single-source
analysis zones, we keep a number of zones significantly larger
than

'
, by selecting all the zones where the mean-square er-

ror with respect to the associated regression line is below a
user-defined threshold � � . For each such zone, we identify the
two columns that resp. contain the parameters � � � � � and ! � � �
corresponding to that zone. We then consider the parame-
ters � � � � � and � � � resp. as coarse and accurate estimates of
the scale parameters associated to the mixing matrix and we
map each column of � � � � � towards the closest column2 of � � � .
Since the parameters � � � � � were already coupled with the pa-
rameters ! � � � , the latter parameters are thus mapped towards
the

'
columns of parameters � � � . For each element (associ-

ated to the observation index % ) in each such column of � � � ,
we should eventually keep only one parameter value ! � � � .
This is achieved as follows for each such element: among all
the values ! � � � which were mapped above towards this el-
ement, we keep the value which has the highest number of
occurences.

4. EXPERIMENTAL RESULTS

We now present various tests performed with
' 	 � English speech

sources sampled at 20 kHz. These signals consist of 2.5 s of contin-
uous speech from different male speakers. Both sources were first
centered and scaled so that their highest absolute value is equal to
1. The performance achieved in each test is measured by the over-
all signal-to-interference-ratio (SIR) Improvement achieved by this
system, denoted � � � �

below, and defined as the ratio of the output
and input SIRs of our BSS system.
All our tests aim at estimating the influence of the time shifts � � � on

2A user-defi ned threshold � � is used to ignore any column of parameters� � � � � such that all its distances with respect to the � columns of parameters� � � are above that threshold.

V ­ 855



� 0 25 100 200

Frobenius norm 2.8e-5 1.6e-2 3.6e-2 6.7e-2

Table 1. Frobenius norm of the difference between the actual
matrices of parameters � � � and their estimates provided by AD-
TIFCORR.

the performance of the proposed method. We therefore use symmet-
rical mixing matrices defined as� � � � �

� 	 � � � � 
 � � �
� � � � 
 � � � 	 � � (19)

The values that we considered for � are � � � , 25, 100 and 200. The
input SIR of our BSS system is equal to 0.9 dB.
As explained in Section 3.2, the proposed method uses TF represen-
tations of the observed signals � � � � � , obtained by computing their
STFTs

� � � � � � � . More precisely, this type of representation is used
twice in the AD-TIFCORR approach, i.e. first when considering
constant-frequency analysis zones used for estimating the parame-
ters � � � , and then when considering constant-time analysis zones
used for estimating the parameters � � � � � and � � � � . These two types
of analysis zones may lead to different optimum values as for the
parameters of STFTs and numbers of STFT windows per analysis
zone. Therefore, we independently considered two sets of such pa-
rameters, resp. associated to the above two types of analysis zones
in our approach, i.e.:� We here denote � (resp. � � ) the number of samples of ob-

served signals � � � � � in each time window of the STFTs used
in constant-frequency (resp. constant-time) analysis zones.� As stated above in Definition 1, � (resp. � � ) is the number
of adjacent windows in constant-frequency (resp. constant-
time) analysis zones.� We here denote 	 (resp. 	 � ) the temporal overlap between the
time windows in the STFTs used in constant-frequency (resp.
constant-time) analysis zones.

For the sake of simplicity, we fix some parameters in the tests re-
ported here, i.e. � � � � � , � � 	 � and 	 � 	 � � � � � . We also fix
the user-defined thresholds � � � � � 	 � � � � � to 0.15, 0.1 and 0.1.

The other parameters of our BSS method are varied as follows.
The number � � of samples per STFT window is geometrically var-
ied from 512 to 32768 samples. The number � � of windows per
analysis zone is set to 16 when � � � � 	 � . This value of � � is then
increased geometrically with � � . Thus, the absolute width of the fre-
quency bands associated to the frequency domain

�
of the analysis

zones � � 	 � � � � takes the same value whatever � � and is here equal to
625 Hz.

In our approach, the estimates of � � � are independent from the
parameters � � and � � varied in these tests. Table 1 provides the
Frobenius norm of the difference between the estimated and actual
matrices of parameters � � � . This norm is quite low, showing that
our method always succeeds in identifying the parameters � � � very
accurately.
The overall performance of our approach is shown in Table 2. This
table shows that the range of STFT window sizes � � which yields the
best performance is � � � � � � � � � 	 � � . The � 
 � 


s are then above
approximately 20 dB even for the highest considered time shift � .
Note that the � 
 � 


s significantly decrease when � increases. When� � � � 	 � � , the method fails finding exactly the actual columns of

� STFT window size � �
512 1024 2048 4096 8192 16384 32768

0 76.8 76.8 76.8 76.8 76.8 76.8 76.8
25 32.3 32.3 32.3 32.3 32.3 -13.1 inv.
100 -17.3 -18.3 22.5 22.5 22.5 22.5 inv.
200 -15.7 4.1 19.8 19.8 19.8 5.9 inv.

Table 2. Performance ( � 
 � 

in dB) for � � � , 25, 100, 200 vs

STFT window size � � . ”inv.” means invisible.

time shifts in a significant number of tests because the sources tend
to become invisible for long STFTs. The method also fails in some
cases when � � � 	 � � � because the time shifts are non negligible
with respect to the STFT window size � � . It succeeds in finding all
columns of estimated � � � exactly equal to theoretical values in 68%
of the cases considered in Table 2. The variations of � 
 � 


with re-
spect to � are also reflected in this success rate for � � � : it decreases
from 100% when � � � to 43% when � � � � � .

5. CONCLUSION AND EXTENSIONS

In this paper, we proposed a TF BSS method for AD mixtures. It
avoids the restrictions of the DUET method, which needs the source
to be (approximately) W-disjoint orthogonal. Our approach consists
in first finding the TF zones where a source occurs alone and then
identifying in these zones the parameters of the (filtered permuted)
mixing matrix. Thanks to this principle, this approach applies to
non-stationary sources, provided there exists at least a tiny TF zone
per source where this source occurs alone. We presented various
aspects of the experimental performance of this approach. In our fu-
ture investigations, we will perform a more detailed characterization
of its performance. We will also aim at studying the usefulness of
clustering techniques (such as those proposed for LI mixtures in [6])
in this approach and at extending it to general convolutive mixtures.
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