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ABSTRACT

A novel polynomial-based neural network is proposed for
nonlinear blind source separation. We focus our research
on a recently presented mono-nonlinearity mixture where
a linear mixing matrix is slotted into two mutually inverse
nonlinearities. In this paper, we generalize the mono-
nonlinearity mixing system to the situation where different
nonlinearities are applied to the source signals. The theory
of Series Reversion is merged with the neural network
demixer to perform two layers of mutually inverse
nonlinearities. The corresponding parameter learning
algorithm for the proposed polynomial-based neural
network demixer is also presented. Simulations have been
carried out to verify the efficacy of the proposed
approach. We demonstrate that the proposed network can
successfully recover the original source signals in a blind
mode under nonlinear mixing conditions.

1. INTRODUCTION

Rapid developments during the last decade have seen
Independent Component Analysis (ICA) emerge as one of
the most powerful tools in Blind Signal Separation [1-3].
Generally, the problem of the blind separation of
independent sources involves a set of observations

1 2( ) ( ) ( )
T

px t x t x t� �= � �x � which are generated from a

set of unknown independent components

1 2( ) ( ) ( )
T

qs t s t s t� �= � �s � according to

( )1 2, , ,i i qx f s s s= � (1)

where if is an unknown differentiable bijective mapping,

1,2, ,i p= � and t is the time or sample index. A technique

known as Independent Component Analysis (ICA) is
exploited to estimate both the mixing mappings if ’s and

the original sources ( ), 1,2, ,is t i q= � . A popular

assumption by most ICA algorithm is that the mixing
mapping takes the form of the linear combination, i.e.

( )1 2 1 1 2 2, , ,i q i i iq qf s s s m s m s m s= + + +� � . However, for

many practical problems, mixed signals are more likely to
subject to some kind of nonlinear distortions due to
sensory or environmental limitations [2]. Hence, the
search for an algorithm tailored specifically for nonlinear
blind source separation has become increasingly important
at both theoretical and practical levels.

The contribution of this paper is as follows: Firstly, a
multi-nonlinearly constrained system is proposed as the
mixing and demixing model. The model generalizes the
original mono-nonlinearity model previously presented in
[2]. The proposed model is a more general description
than the post-nonlinear systems [5] and provides a better
representation of a nonlinear mixture. Secondly, a new
polynomial-based neural network demixer is proposed and
developed as the separation system to estimate the
unknown source signals. Finally, the theory of Series
Reversion is incorporated into the derivation of the
parameter learning algorithm to account for the special
structure of the demixing network.

2. NONLINEAR ICA MODEL

A mono-nonlinearity mixing model derived from the
theory of functional analysis was proposed in [2] to
provide a general description of the mixing system in the
following form:

( )1 ( )f f −=x M s (2)

where
1 2

T

p� �= � �M m m m� with dimension p q× and

1 2

T

i i i iqm m m� �= � �m � . In this paper, we assume that

the number of sources is equal to that of observations, i.e.
p q N= = . This model is structured in the form of one

linear mixing matrix sandwiched between two layers of
nonlinearities, one of which is the inverse function of the
other. The term ‘mono-nonlinearity’ represents the
condition where an identical nonlinear distortion is
applied to each source signal. However, there is no
guarantee that this condition is always fulfilled in practice.
In fact, the channels between observations and sources are
arbitrarily distorted due to the uncertainty of the
environment. Hence, to preserve the special relationship
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between the two layers in (2), we represent the ‘multi-
nonlinearity’ constrained mixing system by the following
model:

( )= ∗ ∗-1f f
x D MD s (3)

where
[ ]1 2diag Nf f f=fD �

1 1 1
1 2diag Nf f f− − −� �= � �-1f

D �

[ ]1 1 2 2diag N Ng u g u g u∗ = ∗ ∗ ∗gD u �

( )i i i ig u g u∗ =

This model will reduce to the mono-nonlinearity mixing
model when 1 2 Nf f f f= = = =� and can further represent

a linear mixture as a special case if { } 1

N

i i
f = is linear.

A demixing system for (3) can be described by the inverse
of the mixing system where the original sources are
estimated as follows:

1 1 1ˆ ( )− − −= ∗ ∗-1 ff
s D M D x (4)

Using the identity 1− = -1g g
D D , (4) can be rewritten as

1ˆ ( )−= ∗ ∗f fs D WD x (5)

where W is the demixing matrix. Given the observed

signals, the aim is to estimate { } 1

N

i i
f = and W such that the

resulting transformed signals are mutually as independent
as possible and statistically as close as possible to the
source signals.

3. POLYNOMIAL-BASED NEURAL NETWORK
FOR NONLINEAR ICA

In current literature, popular nonlinear network demixers
such as SOM, GTM, RBF [4] and MLP with sigmoidal
nonlinearity [7] are inherently nonlinear because of the
fixed nonlinearities in the hidden neurons. However, the
fixed rigidness of the nonlinearity will lead to the
oversized and overfitted network and inevitably increase
computational complexity [2]. Instead of using a fixed
form of nonlinearity in the hidden neurons, we propose to
design a demixer whereby its intrinsic nonlinearity can be
flexibly controlled.

3.1. Polynomial-based Network as the Nonlinear ICA
Demixing System

The Weierstrass Approximation Theorem states that for

every continuous function :[ , ]φ α β →R , there always

exists a polynomial series ( )
0

M
m

m
m

p u uλ
=

= � , parameterized

by { }{ }0
,

M

m m
M λ

=
=θθθθ , which can uniformly approximate φ

with arbitrary accuracy. Therefore, a feedforward

polynomial-based network shown in Figure 1 is proposed
to reflect the model in (5). The hidden layer neurons in the
proposed network perform the polynomial series to

approximate the mixing mapping functions { } 1

N

i i
f = and

{ }1

1

N

i i
f −

=
. The outputs of the demixing system assume the

following form

( )

( )( )

1

2

[3] [2] [2]
0

[2] [1]

[1] 0
1

M
m

m
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M
n

n
n

=

=

= ∗ =

=

= ∗ = −

�

�-1

f

f

y D y a y

y Wy

y D x b x a

�

�

(6)

where [ ] [ ,1] [ , ]

T

i i i Ny y� �= � �y � , [ ,1] [ , ]

T

m m m Na a� �= � �a � ,

[ ,1] [ , ]

T

n n n Nb b� �= � �b � , [ , ]j iy denotes the ith output of the jth

layer in the demixer, { } 1;

[ , ] 0; 1

m M i N

m i m i
a

= =

= =
and { } 2 ;

[ , ] 1; 1

n M i N

n i n i
b

= =

= =
are

the coefficients, M1 and M2 represents the order of the
series expansion and ‘ � ’ denotes the Hadamard product.

3.2. Series Reversion

As shown in Figure 1, the implementation of the proposed
demixer requires the inverse function of the polynomial
series. It is possible to express the inverse function of a
polynomial in a closed form when the order of the forward
function is 4 or less. However, computing the inverse
function becomes difficult and intractable as the order
increases. The theory of the Series Reversion provides an
alternative solution and further establishes the foundation
for computing the inverse function of a general
polynomial expansion. In this paper, instead of presenting
the theorem formally, we provide a paraphrase of the main
theorem in [6] with further derivation to our proposed
demixing system.

Theorem 1: If the function g(.) has a polynomial

expression as ( )
1

0

M
m

m
m

g u uλ
=

=� , then its inverse function can

be given by the similar form of ( ) ( )1
0

1

n

n
n

g u uγ λ
+∞

−

=

= −� and

the coefficients computed from

( )

1

1

1

2

1

2 3

2

, , 1

2

( 1 )!
( 1)

! !

M

i
i i

M

Mik
ki

n iM
k k i

i
i

n k

n k

γ λ= =

=

=

� �
− +� �� � 	

� �= − 
 �
� �� 

� �
� �

�
� ∏

∏�

(7)

where 2 3 42 3 1, 0, 2,3,4,ik k k n k i+ + + = − ≥ =� � and
1

1
2

M

i
i

k n k
=

� 	
= − +
 �

� 

� . In addition, the differential of nγ with

respect to mλ ’s takes the form of
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Figure 1: Multi-nonlinearity Constrained Mixing Model and Polynomial-based Nonlinear ICA Demixer
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(8)

Hence, the derivative of the reverse series with respect to

the coefficients in the forward polynomial
1

m

g

λ

−∂
∂

can be

easily derived from
21 1

1

M
n

nm n m

g g γ
λ γ λ

− −

=

� 	∂∂ ∂= 
 �∂ ∂ ∂� 

� .

3.3. Gradient Based Parameter Learning Algorithm

The primary goal of the demixing system is to obtain a set
of signals as independent as possible. The cost function
based on the Kullback-Leibler Divergence (KLD) in [1] is
commonly used in blind signal separation problems.
However, in nonlinear ICA, the preservation of
independence is not strong enough to ensure signal
separability and this inadvertently results in non-
uniqueness of solutions. Therefore, to reduce the
indeterminacy of non-unique solutions, the cost function is
modified by incorporating a set of signal constraints into
the original KLD cost function as follows:

( )

( ) ( )

[3] ( )
[3, ] [3, ]

1 1

constraints
2

( )
[3, ] [3, ]

1

log det log ( ) ( , )

( , ) , ,

N N
c

i i i i i iT
i i

D
c

i i i i i
j

d
J p y f y s

d

f y s cum y j cum s j

β
= =

=

= − − +

� �= −� �

� �

�

y

x
��������� (9)

where �i’s denotes a set of constants that control the
weight of the additional constraints; ( ),cum u j represents

the jth order cumulant of u and D is the maximum order of
the cumulant. In fact, these constraints imply the use of a
priori information about the source distributions which is
intended to match the outputs of the demixer to the
original source signals in terms of cumulants. Given the
structure of the demixer expressed in (6), the derivative of
the cost function with respect to the parameters can
therefore be derived as (10)-(12).

( ) ( )

( )

1

1

2
[2] 1 [2]

1

1
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1
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T m T
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m
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m
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m
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=
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where ( ) ( )
1

2
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1
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By inserting (10)-(12) into (13)-(14), the gradient descent
based learning algorithm can be obtained.

( 1) ( ) ( )TJ
t t tµ ∂+ = −

∂WW W W W
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1( 1) ( ) ; 0,1, ,
mm m

m

dJ
t t m M

d
µ+ = − = …aa a

a
(14)

4. RESULT

Five subgaussian signals are generated synthetically as the
original sources and expressed as ( ) [Binary signal;t =s

( )sin (1600 ); sin 600 6 cos(120 ) ; sin(180 );t t t tπ π π π+

Uniform-distributed signal]T . The source signals are
then mixed according to (3) where M is a 5 5× random

mixing matrix and 1 -1diag tanh sinh tanh sinh tanh−� �= � �fD .

The learning rates for the weights and the coefficients ma
are set to 0.001µ =W and 0.00003

m
µ =a , respectively. In

order to assess the performance of the proposed
algorithms, we compare the proposed method with
existing algorithms (Linear ICA [1], RBF [4] and FMLP
Network [7]) based on the performance index expressed as

( ) ( )

2

[3, ]

2 2
1 1

[3, ]

( )1 ( )T N
ii

t n
i i

y ts t

NT E s E y
ρ

= =

� �
� �= −
� �
� �� �

�� (13)

where T represents the length of the source signals. The
source signals, signals recovered by Linear ICA method
and the proposed network, the performance index of the
tested algorithms are shown in Figure 2. We have also
simulated the RBF and FMLP demixers with different
number of hidden neurons respectively but no substantial
improvement of results has been obtained. A Monte-Carlo
experiment of 100 trials has been conducted for the RBF
and FMLP demixer and in each simulation, the
convergence of the RBF and the MLP demixers have been
monitored to ensure that both demixers do not converge to
local minima. In Figure 2(d), the proposed approach has
demonstrated its efficacy in separating signals under the
nonlinear mixture. The success is consecutively followed
by the MLP and RBF but the separation results achieved
by the linear method falls far from optimal and this
indicates the crucial need for nonlinear separation
techniques.

5. CONCLUSION

This paper proposes a new algorithm for separating
nonlinearly mixed signals based on the multi-nonlinearity
constrained mixing model. The hidden neurons activation
function uses a set of finite order polynomials as a means
to compensate for the nonlinear distortions and to regulate
the overfitting of the demixer network. The theory of
Series Reversion is integrated into the proposed neural
network structure to provide a tractable computation of the
inverse series. Simulation results have successfully shown
that the proposed method has significantly outperformed

other linear and nonlinear algorithms in terms of accuracy
and convergence speed.

Figure 2: (a) Original sources.
(b) Recovered signals via Linear ICA method.
(c) Recovered signals via the proposed network.
(d) Performance index of the tested algorithms.
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