
ITERATIVE PROJECTION APPROXIMATION ALGORITHMS FOR PCA

Seungjin Choi §, Jong-Hoon Ahn †, Andrzej Cichocki ‡

§ Department of Computer Science, POSTECH, Korea

seungjin@postech.ac.kr
† Department of Physics, POSTECH, Korea

jonghoon@postech.ac.kr
‡ Advanced Brain Signal Processing Lab, BSI, RIKEN, Japan

cia@brain.riken.jp

ABSTRACT
In this paper we introduce a new error measure, integrated recon-
struction error (IRE), the minimization of which leads to principal
eigenvectors (without rotational ambiguity) of the data covariance
matrix. Then we present iterative algorithms for the IRE minimiza-
tion, through the projection approximation. The proposed algorithm
is referred to as COnstrained Projection Approximation (COPA) al-
gorithm and its limiting case is called COPAL. We also discuss reg-
ularized algorithms, referred to as R-COPA and R-COPAL. Numer-
ical experiments demonstrate that these algorithms successfully find
exact principal eigenvectors of the data covariance matrix.

1. INTRODUCTION

Principal component analysis (PCA) or principal subspace analysis
(PSA) [1] is a fundamental multivariate data analysis method which
is encountered into a variety of areas in neural networks, signal
processing, and machine learning. A variety of adaptive (on-line)
algorithms for PCA or PSA can be found in neural networks litera-
ture [2, 3, 4, 5, 6]. See also [7] and references therein.

The power iteration is a classical method for estimating the largest
eigenvector of a symmetric matrix. The subspace iteration is a di-
rect extension of the power iteration, computing subspace spanned
by principal eigenvectors of a symmetric matrix. The natural power
method is an exemplary instance of the subspace iteration, where the
invariant subspace spanned by the n largest eigenvectors of the data
covariance matrix, is determined [8]. The natural power iteration
provides a general framework for several well-known subspace al-
gorithms, including Oja’s subspace rule [2], PAST [9], and OPAST
[10].

A common derivation of PSA, is terms of a linear (orthogonal)
projection W = [w1 · · · wn] ∈ R

m×n such that given a centered
data matrix X = [x(1) · · ·x(N)] ∈ R

m×N , the reconstruction er-
ror ‖X−W W �X‖2

F is minimized, where ‖·‖F denotes the Frobe-
nius norm (Euclidean norm). It is well known that the reconstruction
error is blind to an arbitrary rotation. Thus, the minimization of the
reconstruction error leads to W = U 1Q where Q ∈ R

n×n is an
arbitrary orthogonal matrix and the eigendecomposition of the co-
variance matrix C = XX� is given by

C =
ˆ

U 1 U 2

˜ »
Λ1 0
0 Λ2

– ˆ
U 1 U 2

˜�
, (1)

where U 1 ∈ R
m×n contains n largest eigenvectors, the rest of

eigenvectors are in U 2 ∈ R
m×(m−n), and associated eigenvalues

are in Λ1, Λ2 with λ1 > λ2 > · · · > λm.

The natural power iteration-based methods and probabilistic meth-
ods such as PPCA [11] and EM-PCA [12], find principal subspace.
In this paper we introduce the integrated reconstruction error (IRE)
and show that its minimization leads to exact principal eigenvec-
tors (without rotational ambiguity). We present iterative algorithms,
referred to as COnstrained Projection Approximation (COPA) algo-
rithm and its limiting case is called COPAL, which iteratively min-
imize the IRE, through projection approximation. We also present
their regularized version, which is useful for a rank-deficient case.

2. INTEGRATED RECONSTRUCTION ERROR

It was shown in [9] that the reconstruction error JRE = ‖X −
W W �X‖2

F attains the global minimum if and only if W = U 1Q.
Now we introduce the IRE that is summarized below.

Definition 1 (IRE) The integrated reconstruction error, JIRE , is
defined as a linear combination of n partial reconstruction errors
(PRE), Ji =

‚‚X − W EiW
�X

‚‚2

F
, i.e.,

JIRE(W ) =

nX
i=1

αiJi

=
nX

i=1

αi

‚‚‚X − W EiW
�

X

‚‚‚2

, (2)

where αi > 0 and Ei ∈ R
n×n is a diagonal matrix, defined by

[Ei]jj =

j
1 for j = 1, . . . , i,

0 for j = i + 1, . . . , n.

Theorem 1 The IRE is minimized if and only if W = U 1.

The last term in IRE, Jn, is the standard reconstruction error. It
was shown in [9] that W is a stationary point of Jn if and only if
W = U 1Q (hence W �W = I is satisfied). All stationary points
of Jn are saddle points, except when U 1 contains the n dominant
eigenvectors of C . In that case, Jn attains the global minimum.

PREs Ji are of the form

Ji =
‚‚‚X −

“
w1w

�
1 + · · · + wiw

�
i

”
X

‚‚‚2

F
,

where wi represents the ith column vector of W . The i-dimensional
principal subspace is completely included in the (i+1)-dimensional
principal subspace. Hence,the IRE is minimized when each PRE
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Ji is minimized. Minimizing each Ji is reminiscent of the defla-
tion method where the eigenvectors of C is extracted one by one.
Thus, it is expected that the minimization of IRE leads to principal
eigenvectors of C . The rigorous proof is left out due to the space
limitation. A major difference between the deflation method and our
method is that the former extracts principal components one by one
and the latter find principal components simultaneously.

3. ITERATIVE ALGORITHMS

3.1. COPA

The projection approximation [9] assumes that the difference be-
tween W �

(k+1)X and W �
(k)X is small, which leads us to consider

the following objective function

JIRE(W ) =
1

2

nX
i=1

αi

‚‚X − W (k+1)EiY (k)

‚‚2
, (3)

where Y (k) = W �
(k)X .

The gradient of (3) with respect to W (k+1) is given by

∂JIRE

∂W (k+1)

= −XY
�
(k)Σ + W (k+1)

h“
Y (k)Y

�
(k)

”
� Γ

i
, (4)

where

Σ =

26664
Pn

i=1 αi 0 0 · · · 0
0

Pn

i=2 αi 0 · · · 0
...

. . .
...

0 0 0 · · · αn

37775 ,

Γ =

2666664

Pn

i=1 αi

Pn

i=2 αi

Pn

i=3 αi · · · αnPn

i=2 αi

Pn

i=2 αi

Pn

i=3 αi · · · αnPn

i=3 αi

Pn

i=3 αi

Pn

i=3 αi · · · αn

...
. . .

...
αn αn αn · · · αn

3777775 ,

and � is the Hadamard product (element-wise product). With these
definitions, it follows from ∂JIRE

∂W (k+1)
= 0 that

W (k+1) =
h
XY

�
(k)

i
Σ

h“
Y (k)Y

�
(k)

”
� Γ

i−1

=
h
XY

�
(k)

i h“
Y (k)Y

�
(k)

”
�

`
ΓΣ

−1´i−1

= XY
�
(k)

h
U

“
Y (k)Y

�
(k)

”i−1

, (5)

where U(Y ) is an element-wise operator, whose arguments Yij are
transformed by

U(Yij) =

(
Yij

Pn
l=i αlP
n
l=j

αl
if i > j,

Yij if i ≤ j.
(6)

The operator U(Y ) results from the structure of ΓΣ
−1 given by

ΓΣ
−1 =

266666664

1 1 1 · · · 1
Pn

i=2 αiP
n
i=1 αi

1 1 · · · 1
Pn

i=3 αiP
n
i=1 αi

Pn
i=3 αiP
n
i=2 αi

1 · · · 1

...
...

...
...

αnP
n
i=1 αi

αnP
n
i=2 αi

αnP
n
i=3 αi

· · · 1

377777775
.

Replacing Y (k) by W �
(k)X , leads to the updating rule for COPA:

W (k+1) = CW (k)

h
U

“
W

�
(k)CW (k)

”i−1

. (7)

3.2. COPAL

We consider the limiting case where αi+1

αi
→ 0 for i = 1, . . . , n −

1, that is, weighting αi’s are rapidly diminishing as i increases.
In such a case, the operator U(·) becomes the conventional upper-
triangularization operator UT which is given by

UT (Yij) =

j
0 if i > j,

Yij if i ≤ j.
(8)

This leads to the COPAL algorithm

W (k+1) = CW (k)

h
UT

“
W

�
(k)CW (k)

”i−1

. (9)

Theorem 2 The fixed point W of the COPAL (9) satisfies W =
U 1Υ (after each column vector of W is normalized), where Υ is
a diagonal matrix with its diagonal entries being 1 or -1, provided
that the nth and (n + 1)th eigenvalues of C are distinct and the
initial weight matrix W (0) meets a mild condition, saying that there
exists a nonsingular matrix L ∈ R

(m−n)×n such that U�
2 W (0) =

LU�
1 W (0) for a randomly chosen W (0).

Proof. It can be proved in a similar way to the method in [13].

3.3. R-COPA and R-COPAL

We consider the rank-deficient case where n is greater than the rank
of the data covariance matrix. For numerical stability, we add a reg-
ularizer term in (3). The modified objective function is given by

eJIRE(W ) =
1

2

nX
i=1

αi

‚‚X − W (k+1)EiY (k)

‚‚2

+
1

2
β tr{W (k+1)W

�
(k+1)}, (10)

where β is the Lagrangian multiplier.
The minimization of (10) leads to the updating rule that is of

form

W (k+1) = CW (k)

h
U

“
W

�
(k)CW (k)

”
+ βΣ

−1
i−1

. (11)

This is referred to as R-COPA.
We also consider the following objective function with a weighted

regularization term,

J̄IRE(W ) =
1

2

nX
i=1

αi

‚‚X − W (k+1)EiY (k)

‚‚2

+
1

2
β tr{W (k+1)ΣW

�
(k+1)}. (12)

Incorporating with the limiting case, αi+1

αi
→ 0, the minimization

of (12) leads to

W (k+1) = CW (k)

h
UT

“
W

�
(k)CW (k)

”
+ βI

i−1

. (13)

Algorithms are summarized in Table 1, where the constrained
natural power iteration [13] is a variation of the natural power itera-
tion [8], incorporating with the upper-triangularization operator UT .
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Table 1. The outline of updating rules and characteristics of algorithms.
Algorithm Updating rule Type

Batch PAST [9] W (k+1) = CW (k)

ˆ
W �

(k)CW (k)

˜−1
PSA

Batch Natural Power [8] W (k+1) = CW (k)

ˆ
W �

(k)C
2W (k)

˜− 1
2 PSA

Constrained Natural Power [13] W (k+1) = CW (k)

ˆ
UT

`
W �

(k)C
2W (k)

´˜− 1
2 PCA

COPA W (k+1) = CW (k)

ˆ
U

`
W �

(k)CW (k)

´˜−1
PCA

R-COPA W (k+1) = CW (k)

ˆ
U

`
W �

(k)CW (k)

´
+ βΣ

−1
˜−1

Regularized PCA

COPAL W (k+1) = CW (k)

ˆ
UT

`
W �

(k)CW (k)

´˜−1
PCA

R-COPAL W (k+1) = CW (k)

ˆ
UT

`
W �

(k)CW (k)

´
+ βI

˜−1
Regularized PCA

(a) (b)

Fig. 1. Principal directions computed: (a) by the natural power
(or the batch PAST); (b) COPA (or COPAL). The natural power
method finds rotated principal directions, whereas our algorithms
(COPA and COPAL) estimate exact principal directions of the two-
dimensional data.

4. NUMERICAL EXPERIMENTS

Numerical examples are provided, in order to verify that the weight
matrix W in COPA and COPAL converges to the true eigenvectors
of the data covariance matrix C . The first experiment was carried
out with 2-dimensional vector sequences of length 1000. Fig. 1
shows the data scatter plots and principal directions computed by the
natural power method and by our algorithms (COPA and COPAL).
One can see that principal directions estimated by the natural power
method are rotated eigenvectors of the data covariance matrix (i.e.,
principal subspace). On the other hand, COPA or COPAL finds exact
principal directions (see Fig. 1 (b)).

The second experiment involves the useful behavior of our al-
gorithms for high-dimensional data, showing that even for the case
of high-dimensional data, our algorithms successfully estimate ex-
act first few principal directions of data. To this end, we gener-
ated 5000 5-dimensional Gaussian vectors (with zero mean and unit
variance) and applied a linear transform to construct the data matrix
X ∈ R

1000×5000. The rank of the covariance matrix C is 5. COPA
and COPAL algorithms in (7) and (9) were applied to find 3 principal
eigenvectors from this data matrix. For the case of COPA, we used
α1 = 1, α2 = 0.1, α3 = 0.01. Results are shown in Fig. 2 where
both COPA and COPAL algorithms show similar behavior.

Next experiment is regarding the regularized algorithms. The
10-dimensional data vectors were generated by a linear transform of
3-dimensional Gaussian vectors. COPAL and R-COPAL were ap-
plied with n = 5 (see Fig. 3). In this case, COPAL showed severe
numerical instability during iterations, although first three eigenvec-
tors were successfully extracted. Frequently, COPAL became un-
stable. On the other hand, R-COPAL successfully extracted first
three eigenvectors and found last two eigenvectors that are orthogo-
nal to 4th and 5th eigenvectors computed by SVD. For R-COPAL,
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Fig. 2. Evolution of weight vectors in COPAL, is shown. Corre-
lations represent the absolute value of the inner product between a
weight vector and a true eigenvector (computed by SVD).

β = 0.01 was used in our simulation.
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Fig. 3. Evolution of weight vectors in COPAL and R-COPAL, is
shown. Correlations represent the absolute value of the inner prod-
uct between a weight vector and a true eigenvector (computed by
SVD). The last two eigenvectors estimated by COPAL (a), are oscil-
lating, which causes a numerical instability. In contrast, R-COPAL
is numerically stable.

As a real world example, COPAL was applied to USPS hand-
written digit data, in order to determine eigen-digits (see Fig. 4.
Each image is the size of 16× 16, which leads to a 256-dimensional
vector. First 100 principal components were estimated by COPAL
as well as SVD and batch version of PAST with deflation. Although
the deflation method determines eigenvectors without rotational am-
biguity, however, error accumulation is propagated as n increases
(see Fig. 4 (d)).
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(a) (b)

(c) (d)

Fig. 4. USPS hand-written digit data, ’2’, is shown in (a). The rest are corresponding principal components estimated by: (b) SVD; (c)
COPAL; (d) batch PAST with deflation. The eigen-digits estimated by COPAL is exactly same as ones found by SVD. On the other hand,
first 10-20 eigen-digits computed by the deflation method are same as true eigen-digits, but eigen-digits are deteriorated as n increases.

5. CONCLUSION

We have introduced a new error measure, IRE, for PCA, whose min-
imization produced the exact eigenvectors (without rotational am-
biguity) of the data covariance matrix. We have presented two al-
gorithms, COPA and COPAL which iteratively minimized the IRE,
through the projection approximation, to determine the principal di-
rections of a set of observed data. We have also presented regular-
ized PCA algorithms, R-COPA and R-COPAL and have shown their
useful behavior for the case where n is greater than the rank of the
data covariance matrix. The validity of our proposed algorithms was
demonstrated through numerical experiments. The integrated error
was also investigated in [14, 15] in the context of a generative model,
leading to EM algorithms where principal directions were estimated
through alternating two steps (E and M steps). In contrast, proposed
algorithms in this paper, COPA and COPAL, need not go through
two steps, which is a major advantage over EM type algorithms.
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