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ABSTRACT

This paper describes two extensions of the recent Morphological
Component Analysis (MCA) method to multichannel data. MCA
takes advantage of the sparse representation of structured data in
large overcomplete dictionaries to separate features in the data
based on their morphology. It was shown to be an efficient tech-
nique in such problems as separating an image into texture and
piecewise smooth parts or for inpainting applications. A first ex-
tension, MMCA, achieves a similar source separation objective
based on morphological diversity. A second extension, GMMCA,
takes advantage of the highly sparse representations of the sources
that can be built using MCA. Indeed, parsity is now generally rec-
ognized as a valuable property for blind source separation. The
efficiency of MMCA and GMMCA is confirmed in numerical ex-
periments.

1. INTRODUCTION

A common assumption in signal or image processing is that mea-
surements X made typically using an array of sensors, often con-
sists of mixtures of contributions from various possibly indepen-
dent underlying physical processes S. The simplest mixture model
is linear and instantaneous and takes the form :

X = AS + N (1)

where X and S are random matrices of respective sizes m×T and
n × T and A is an m × n matrix. Multiplying S by A linearly
mixes the n sources into m observed processes. In some cases,
an m × T random matrix N is included to account for instrumen-
tal noise.The problem is then to invert the mixing process so as
to separate the data back into its constitutive elementary building
blocks leading to a more concise and possibly more interpretable
representation of the data. In a blind approach assuming minimal
prior knowledge of the mixing process, source separation is merely
about devising quantitative measures of diversity or contrast. A
first simple example is the separation of sources with disjoint sup-
ports in a given representation such as time and/or frequency. In
a second example, the strict orthogonality of the supports can be
relaxed provided the mixed source processes are now statistically
independent. This is the framework of Independent Component
Analysis (ICA), a growing set of multichannel data analysis tech-
niques, which have proven successful in a wide range of appli-
cations [1]. Indeed, although statistical independence is a strong
assumption, it is in many cases physically plausible.

ICA algorithms for blind component separation and mixing
matrix estimation depend on the a priori model used for the prob-
ability distributions of the sources [2, 1]. In a first set of blind
techniques, the components are modeled as Gaussian processes

and, in a given representation (time, Fourier, wavelet, etc.), sepa-
ration requires that the sources have diverse, i.e. non proportional,
variance profiles. These methods generally lead to criteria express-
ing the joint diagonality of a set of matrix statistics which can be
optimized efficiently [3, 4].

In a second set of techniques, source separation is achieved
based on the non-Gaussianity of all but possibly one of the com-
ponents. Most mainstream ICA techniques belong to this cate-
gory: JADE, FastICA, Infomax (see [1] and references therein).
An especially important case is when the mixed sources are highly
sparse, meaning that each source is only rarely active and mostly
nearly zero. The independence assumption then ensures that the
probability for two sources to be significant simultaneously is ex-
tremely low so that the sources may again be treated as having
nearly disjoint supports. This is exploited for instance in Sparse
Component Analysis [5]. And it is shown in [6] that first moving
the data into a representation in which the sources are assumed to
be sparse will greatly enhance the quality of the separation. Pos-
sible dictionaries include Fourier and related bases, wavelet bases,
etc. Working with combinations of several bases or with very re-
dundant dictionaries such as undecimated wavelet frames or the
more recent ridgelets, curvelets [7], etc. could lead to even more
efficient representations. However, selecting from a large dictio-
nary, the smallest subset of elements, that will linearly combine to
reproduce a given signal or image, is a hard combinatorial prob-
lem. Nevertheless, several algorithms have been proposed that can
help build very sparse decompositions [8, 9] and in fact, a number
of recent results prove that these algorithms will recover the unique
optimal decomposition provided this solution is sparse enough and
the dictionnary is sufficiently incoherent [10, 11].

Morphological Component Analysis (MCA) is a method de-
scribed in [12] that constructs a sparse representation of a signal
or an image considering that it is a combination of features which
are sparsely represented in different dictionaries. For instance, im-
ages commonly combine contours and textures : the former are
well accounted for using e.g. curvelets while the latter may be
well represented using local cosine functions. A brief account of
MCA is given in section 2. The purpose of this contribution is to
extend MCA to the case of multi-channel data. This is described
in section 3. Then we show in section 4 how the sparse represen-
tation of data obtained using MCA can be used to enhance blind
source separation.

2. MCA

In searching a sparse decomposition of a signal or image s, MCA
makes the specific assumption that s is a sum of K components ϕk

where a possibly overcomplete dictionary Φk is given for each k,
in which ϕk admits a sparse representation, ϕk = Φkαk while its
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sparsest decomposition over the other Φk′ �=k is essentially diffuse.
The different Φk can be seen as acting as discriminants between
the different components of the initial signal s. Ideally, the αk are
the solutions of:

min
{α1,..., αK}

KX
k=1

‖αk‖0 subject to s =
KX

k=1

Φkαk. (2)

However, the L0 norm is non-convex and optimizing the above
criterion is combinatorial by nature. Substituting an L1 sparsity
measure to the L0 norm, as motivated by recent equivalence re-
sults e.g. in [10], and relaxing the equality constraint, the MCA
algorithm seeks a solution to the following minimization problem:

min
ϕ1,...,ϕK

KX
k=1

λk‖αk‖1 + ‖s −
KX

k=1

ϕk‖
2
2 with ϕk = Φkαk (3)

with again ϕk = Φkαk. In the case where each Φk is an orthonor-
mal basis, the above is equivalent to the following set of coupled
equations:

∀k, ϕk = rk −
λk

2
Φksign(Φ−1

k ϕk) with rk = s−
X
k′ �=k

ϕk′ (4)

This can be solved efficiently using the iterative Block-Coordinate
Relaxation Method [13] in conjunction with, at a given k, a soft-
thresholding of the decomposition of rk over Φk. When non-
unitary or redundant transforms are used, the above is no longer
strictly valid. Nevertheless, simple shrinkage does give satisfac-
tory results when practiced with non-unitary transforms and in fact
this is rather well understood theoretically [14]. Finally, denoting
by Tk and Rk the forward and inverse transforms associated with
the redundant dictionary Φk, MCA finds a solution to problem (3)
with the following algorithm:

1. Set # of iterations Lmax & thresholds ∀k, δk = Lmax · λk/2

2. While δk > λk/2,
For k = 1, . . . , K :

Update of ϕk assuming all ϕk′ �=k are fixed:
– Compute the residual rk = s −

P
k′ �=k ϕk′

– Compute αk = Tkrk

– Soft threshold αk with threshold = δk gives α̂k

– Reconstruct ϕk by sk = Rkα̂k

Lower the thresholds: δk = δk − λk/2

In the above, soft thresholding results from the use of an L1 spar-
sity measure, which as explained earlier comes as a good approx-
imation to the desired L0 norm. Towards the end of the itera-
tive process, applying a hard threshold instead may lead to better
results. The final threshold should vanish in the noise-less case.
However, when equation 3 is interpreted in a probabilistic frame-
work, then the last threshold depends on the noise variance and on
the widths λk of the Laplacian priors set on the generative model
of the data. A detailed description of MCA is given in [12] along
with results of experiments in contour/texture separation and im-
age inpainting.

3. MULTICHANNEL MCA

We consider the mixing model (1) and make the additional as-
sumption that each source sk is well (i.e. sparsely) represented

in a specific dictionary as in section 2. Again, assigning a Lapla-
cian prior with precision λk to the decomposition coefficients of
the kth source sk in dictionary Φk is a practical way to implement
this property. Here, sk denotes the 1 × T array of the kth source
samples i.e. the kth line in S. Classically, we assume Gaussian
white noise with known covariance Γn. This leads to the follow-
ing joint estimator of the source processes S = {s1, . . . , sn} and
the mixing matrix A:

{Ŝ, Â} = Arg min
S,A

‖X −AS‖2
2,Γn

+
X

k

λk‖skTk‖1 (5)

where ‖M‖2
2,Γn

= trace
`
M

T
Γ

−1
n M)

´
. Unfortunately, this min-

imization problem suffers from the lack of scale invariance of the
objective function. Indeed, combining a scaling of the mixing
matrix, A ← ρA, and an inverse scaling of the source matrix,
S ← 1

ρ
S, leaves the quadratic measure of fit unchanged whereas

the term measuring sparsity is deeply altered by the same inverse
scale factor 1

ρ
. Consequently, the minimization will probably drive

us to trivial solutions, A → ∞ and S → 0, since the spar-
sity term can be minimized ad libitum as ρ goes to +∞. Never-
theless, scale-invariance can be artificially recovered by normal-
izing the columns ak of the mixing matrix A at each iteration
(ak+

← ak−
/‖ak−

‖2) and propagating the scale factor to the
corresponding source, sk

+ ← ‖ak−
‖2sk

−, and precision λk
+ ←

‖ak−
‖2λk

−.

Define the kth multichannel residual Dk = X−
P

k′ �=k ak′

sk′

as corresponding to the part of the data unexplained by the other
couples {ak′

, sk′}k′ �=k. Then, the minimization problem (5) is
equivalent to jointly minimizing the following set of elementary
criteria :

∀k, {ŝk, âk} = Arg min
sk,ak

‖Dk − aksk‖
2
2,Γn

+ λk‖skTk‖1 (6)

Zeroing the gradient with respect to sk and ak of this criterion
leads to the following coupled equations:

8><>:
sk = 1

akT
Γ
−1

n ak

“
akT

Γ
−1
n Dk − λk

2
Sign(skTk)Rk

”
ak = 1

sksk
T Dksk

T

(7)
Although the above holds for unitary transforms for which Rk =
T

T
k , we make the same approximation as in the previous section

and consider that it is still valid for redundant transforms. Then, for
a fixed ak, the source process sk is estimated by soft-thresholding
the coefficients of the decomposition of a coarse version esk =

(1/akT
Γ

−1
n ak)akT

Γ
−1
n Dk with threshold λk/(2akT

Γ
−1
n ak). Con-

sidering a fixed sk, the update on ak follows from a simple least
squares linear regression. The MMCA algorithm is given below :
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1. Set # of iterations Lmax & thresholds ∀k, δk = Lmax · λk/2

2. While δk > λk/2,
For k = 1, . . . , n:
• Update of sk assuming all sk′ �=k and ak′

are fixed:

– Compute the residual Dk = X −
P

k′ �=k ak′

sk′

– Project Dk: s̃k =
1

akT
Γ
−1

n ak
akT

Γ
−1
n Dk

– Compute αk = s̃kTk

– Soft threshold αk with threshold = δk gives α̂k

– Reconstruct sk by sk = α̂kRk

• Update of ak assuming all sk′ and ak′ �=k are fixed:
ak

=
1

sksk
T Dksk

T

Renormalize ∀k, ak , sk and δk

Lower the thresholds: ∀k, δk = δk − λk/2.

In comparison to the algorithm in [6] which uses a single sparsify-
ing transform and a quadratic programming technique, our method
considers more than just one transform and a shrinkage-based opti-
mization. Figure 1 illustrates a simple experiment. The two source
signals at the top left were linearly mixed to form the three syn-
thetic observations shown at the top right. Some Gaussian noise
was also added to the mixtures. The two sources are morpho-
logically different: one consists of four bumps and the other is a
plain sinewave. Source separation was conducted using the above
MMCA algorithm and, for the sake of comparison, with the pub-
licly available implementation of the JADE algorithm1. MMCA is

Fig. 1. top left : the two initial source signals. top right : three
noisy observed mixtures. bottom left : the two source signals
reconstructed using MMCA. bottom right : the two source signals
reconstructed with Jade.

clearly able to effciently separate the intial source signals. Note
that denoising is an intrinsic part of the algorithm as mentioned
in section 2. However, the morphological diversity of the source
processes is a condition for the good performance of MMCA. In
the next section, we describe an extension to the case of similarly
structured sources in which we exploit the sparse representations
obtained with MCA to enhance blind source separation.

1http://www.tsi.enst.fr/ cardoso/guidesepsou.html

4. GENERALIZED MMCA

We assume now that the sources are statistically independent and
that each source is a linear combination of morphologically differ-
ent components as follows :

∀k ∈ {1, . . . , n}, sk =

nkX
i=1

ϕk,i =

nkX
i=1

αk,iRi (8)

where each component ϕk,i is well sparsified by only one trans-
form Tk. Estimating all the parameters of the GMMCA model
leads to the following minimization problem :

min
A,...,ϕk,i,...

(
‖X − AS‖2

2,Γn
+

nX
k=1

nkX
i=1

λk‖ϕk,iTi‖1

)
(9)

At any point in the minimization, the MCA algorithm can be used
to estimate the underlying components {ϕ̂k,i}i=1,...,nk

in the cur-
rent estimate of the kth source s̃k. This builds very sparse rep-
resentations of the different sources which will then have mostly
disjoint supports: as mentioned earlier the probability for sparse
independent sources to be simultaneously active is very low. This
contrast is the key to a successful source separation as it enforces
the necessary diversity to tell the sources apart. The estimation
of the mixing matrix A should benefit from this increased diver-
sity. Following similar derivations as for the minimization of (3)
and (5), we propose that (9) can be solved using the following
GMMCA algorithm:

1. Set # of iterations Lmax & thresholds ∀k, δk = Lmax · λk/2

2. While δk > λk/2 :
For k = 1, . . . , n:

3. Update of sk assuming all sk′ �=k and ak′

are fixed:
– Compute coarse current estimate s̃k of source sk.
– Perform an MCA decomposition of s̃k with final threshold
δk and get coefficients {αk,i} of its sparse representation.

4. Update of A assuming the sources are fixed.
5. Renormalize ∀k, ak, sk and δk as in MMCA.
6. Lower the thresholds, ∀k, δk = δk − λk/2.

At step three, a coarse version s̃k of sk is computed. In the case
where there are more sensors than sources to estimate, the current
estimate of the mixing matrix generally admits a pseudo-inverse
Ā

−1. We may then take s̃k = (Ā−1
X)k. In the under-determined

case, one may take s̃k = 1/(akT
Γ

−1
n ak)akT

Γ
−1
n Dk with Dk =

X −
P

k′ �=k ak′

sk′ as in MMCA. We then build sparse repre-
sentations of the s̃k using the MCA algorithm with final thresh-
old δk/akT

Γ
−1
n ak. Step four of the GMMCA algorithm con-

sists in estimating the mixing matrix assuming the sources are
fixed. Based on the most active atoms in the sparse representa-
tions α = {αk,i} of each of the current estimates of the source
processes resulting from the MCA decomposition, the current es-
timate of the mixing matrix can be refined using the following up-
date rule :

Â ← Â + µÂ(I− βΥ(α)αT ) (10)

where β is a normalizing constant and I is the identity matrix in
R

m. This update is simply a descent along the rescaled gradient
with respect to A, of an approximation to the log likelihood as
derived in [15]. Therefore, Υ is a vector of non-linear score func-
tions related to the assumed probability distributions of the source
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coefficients. A line-search algorithm is used to find the optimal µ
at each step. In the noise-less over-determined case, the minimiza-
tion problem (9) could be rewritten in terms of the inverse of A.
The learning rule on the de-mixing matrix would then be what one
typically encounters in noise-less ICA algorithms [1].

The GMMCA algorithm was applied on synthetic data. The
top of Figure 2 shows 128 samples of two synthetic source signals
with zero mean and unit variance. Both sources consist of bumps
and sines. These were linearly mixed and white Gaussian noise
of variance σ = 0.01 was added, resulting in the two observed
signals shown on the middle row of Figure 2. The over-complete
dictionary T we used was obtained as the concatenation of the
Dirac basis and the DCT basis. The bottom row of figure 2 shows

Fig. 2. top row : the two initial source signals. middle row: two
noisy observed mixtures. bottom row : the two source signals
reconstructed using GMMCA.

the two source signals estimated using GMMCA. Although more
work is necessary to fully assess the performances of GMMCA,
these preliminary results illustrate the efficiency of the proposed
method for source separation. More results and applications to 2D
data will be presented at the conference.

5. CONCLUSION

The MCA algorithme provides a powerful and fast sparse signal
decomposition in a redundant dictionary. The MMCA algorithm
described in this paper extends MCA to the multichannel case.
For blind source separation, this first extension is shown to per-
form well provided the original sources are morphologically dif-
ferent meaning that the sources are sparsely represented in differ-
ent bases. We also introduced a more general model, GMMCA,
which assumes that the sources admit a sparse decomposition in
a given over-complete dictionary T to be recovered using MCA.
GMMCA is shown to enhance source separation by exploiting the
sparsity of the sources.
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