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ABSTRACT

The concept underlying most on-line gradient-based algorithms
for blind signal separation (BSS) is that the unknown demixing
matrix is adjusted with an appropriate step-size in the direction
of the gradient computed at each sample instant. Associated with
these algorithms is a gradient noise problem. In this paper, we de-
velop, from the on-line processing (OP) algorithm derived using
the nonstationarity and nonwhiteness properties, a normalized al-
gorithm in which the update of the demixing matrix is based on
the minimal disturbance principle. We show that the resulting up-
dates are in the same direction as those of the original algorithm
but with a scaling factor whose upper bound is unity. We evaluate
the convergence speed and robustness to gradient noise of the new
algorithm.

1. INTRODUCTION

Blind signal separation (BSS) has received considerable attention
recently in such diverse fields as signal processing and commu-
nications. The classical instantaneous mixing and demixing pro-
cesses in the blind signal separation problem have the following
descriptions

���� � ����� (1)

���� � ����� (2)

where ���� � ������� ������ � � � � �� ����
� is the source signals

vector, ���� � ������� ������ � � � � �� ����� is the observed sig-
nals vector and ���� � ������� ������ � � � � �� ����� is the esti-
mate of the source signals called the output signals vector,� is an
� �� unknown mixing matrix,� is a corresponding demixing
matrix to be computed, the superscript � denotes transposition and
� is the sample index.

The solution to this problem is feasible using second-order
statistics under the following assumptions
A1: � is a square matrix with rank � .
A2: Source signals are zero mean, nonstationary and nonwhite
processes with
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Also, each source signal is uncorrelated with

(iv) � ����������� ��� � � �������� ������ � �� � � � � � ��
� � � and � �

where � � �� �� � � � �� denotes the time lag with � being the max-
imum nonzero time lag, � ��� denotes the statistical expectation
operator, � denotes for all and � denotes for some. A1 ensures the
existence of all source signals to be observed in the form of ����
by the rank of� and makes a solution to the problem feasible. A2
is a key assumption based on the nonstationarity and nonwhiteness
properties that leads to the use of joint diagonalization of matrices
as a criterion in the algorithms presented thereafter.

According to (1), (2) and A2, we obtain, under the framework
of second-order statistics, the following relation

	
���
� ���

��
� ��

���
� ��� ����

���
� ����� (3)

where 	

���
� ���� ��

���
� ��� and �����

� ��� are, respectively, current
estimates of the correlation matrices of source signals, observed
signals and output signals at time lag � ,

��
� denotes an equality

up to scaling factor and permutations of signals represented by
�� � �� with � and � being a nonsingular diagonal matrix
and permutation matrix of dimension � �� , respectively.

It is seen from (3) that the BSS problem is one of finding �
that jointly diagonalizes a set of estimated correlation matrices.
In [1], the on-line processing (OP) algorithms is derived from (3)
by using the current time-average correlation matrix as an estimate
of the correlation matrix and by using the natural gradient method
to minimize an appropriate cost function. Although it has been
shown to separate nonstationary and/or nonwhite signals, the OP
algorithms, like many other gradient-based algorithms, can suffer
from the gradient noise problem when the computed gradient is
either considerably small or large. One possibility to mitigate this
problem is to choose an adaptive step-size that compensates for
such small or large gradients. In this paper, a criterion based on
the principle of minimal disturbance (see e.g. [2]) is used in the
derivation of a normalized algorithm referred to as the normalized
OP (NOP) algorithm. The NOP algorithm addresses the gradient
noise problem and, as a result, exhibits fast convergence and good
robustness to gradient noise.

2. OVERVIEW OF THE OP ALGORITHM

To pave the way to the derivation of NOP, we first give a brief
overview of OP [1]. The OP algorithm relies on the joint diag-
onalization of a set of estimated correlation matrices in (3). The
estimate of observed signals correlation matrix using a nonpara-
metric recursive relation at a given time lag � takes the form

��
���
� ��� � 
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���
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������� ��� �� (4)

where 
 is a forgetting factor with � � 
 � �. When the source
signals are known to be stationary but nonwhite, the estimation of
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observed signals correlation matrix takes the form
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A set of the above-defined matrices called the current time-
average correlation matrix is used in the cost function ��� which,
after being minimized, gives a desired demixing matrix �. The
OP cost function is given by
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with �� � � being a small positive constraint constant, ����
��

���
and ����� being, respectively, the joint diagonalization function
at time lag � and the constraint function, defined by
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where ��
���

� ��� � ��
���
� ��� � ��

����
� ��� is a symmetric matrix,

called the symmetric part of the current time-average output sig-
nals correlation matrix �����

� ���, off ��� is the matrix operator that
returns a matrix with all its diagonal entries being zero, diag ��� is
the matrix operator that returns a matrix with all its off-diagonal
entries being zero, ���

�
denotes the Frobenius norm and ���� is a

positive weight satisfying
��

��� �
��� � � and is generally set to

�
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giving balanced weighting for joint diagonalization. We note
here that (3) still holds if all its correlation matrices are replaced by
their corresponding symmetric parts. This provides a more com-
pact form of the gradient at the same computational complexity.
By using the natural gradient method [3], the demixing matrix up-
date Æ���� ����� ������� is given by
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where ��� is the natural gradient operator with respect to ����
and � is a positive step-size. The negative sign in (9) means that
the algorithm moves towards the minimum in the natural gradient
descent direction. The natural gradients of ����

��
��� and ����� are

given, respectively, by
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�������� � � diag ������ ���� �������� (11)

By initialing � with all its diagonal entries being unity so
as to prevent the algorithm from being trapped by possible local
minima induced by �� and by choosing appropriate � and �� , the
OP algorithm will converge in the mean (first moment) to a min-
imum corresponding to the desired demixing matrix whose exis-
tence is ensured by A1, provided that the identifiability (separabil-
ity) conditions in [1] hold and variations in the nonstationarity of
the source signals are sufficiently slow.

We see that the update Æ����moves in a descent direction of
the average of ��� natural gradients of ����

��
��� and a natural gra-

dient of �����. It can also be seen that such natural gradients do
not only give direction but also magnitude which, whether small or
large, needs to be compensated for by an appropriate step-size �.
Excessively small and large gradients can result in gradient noise
problems ranging from slow convergence to divergence of the al-
gorithm.

3. DERIVATION OF THE NOP ALGORITHM

In this section, we introduce the principle of minimal disturbance
to the demixing process to form a criterion for the NOP algorithm.
Developing NOP is thus analogous in some ways to developing the
normalized least mean square (NLMS) algorithm from the least
mean square (LMS) algorithm using the principle of minimal dis-
turbance in the field of supervised adaptive filtering [2]. A com-
mon theme is that the update of an unknown parameter in the adap-
tive structure should be disturbed in a minimal fashion. By apply-
ing this principle to the demixing matrix, we are able to obtain an
update that perturbs the process in a minimal fashion leading to a
fast convergence and robustness of the developed algorithm.

Based on ��� ���, the corresponding update Æ���� can be
written by using a set of components comprising �
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��� and
����� as
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where Æ����
��

��� is an update based on �
���
��

��� and Æ����� is
an update based on �����.

In light of the principle of minimal disturbance, every com-
ponent of Æ���� in (12) should disturb the separation system in
a minimal fashion. Let us consider an update Æ�

���
��

��� based

on a particular given �
���
��

��� and form the following constrained
minimal disturbance problem

minimize
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which defines a search for Æ����
��

at the sample index � that dis-
turbs the separation process in a minimal manner while forcing
�
���
��

at one step ahead to be zero. To allow (13) to be differentiable

with respect to Æ����
��

���, we exploit the Taylor series expansion
and neglect its high-order to estimate ����
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where �� �� � � Trace


�
�
�
�
. We note that it is more accurate

to use the natural gradient in the Taylor series expansion when
estimating ����

��
��� �� from �

���
��

��� in a matrix environment.
Following the method of Lagrange multipliers, we first replace

�
���
��

�� � �� with (14) and then convert (13) to the following un-
constrained problem
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where �� is the Lagrange multiplier.

Given ��
���

� ��� and ����, we obtain the first-order condi-
tions of (15) as
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and solve for �� by substituting Æ�
���
��

��� from (16) into (17)
giving
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Replacing �� in (16) with (18), we obtain the following opti-
mal component
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A key feature of (19) is that the update Æ�
���
��

��� obtained
from the use of minimal disturbance principle mitigates the gradi-
ent noise by normalizing the natural gradient of ����

��
��� with its

squared Frobenius norm. In particular, we can interpret (19) as an
update Æ�

���
��

��� that moves towards the minimum of ����
��

���
in the natural gradient descent (negative sign) direction with dis-
tance proportional to �

���
��

��� and then vanishes at the minimum.
It is also seen that (19) is adaptive and self-adjustable in the sense
that the update Æ����

��
��� moves with a large step-size when the

difference between the current point and the minimum point, or
simply �

���
��

���, is large and it moves with a smaller step-size as
the point becomes close to the minimum.

To simplify (19), we use (7) and (10) and expand (19) to
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By applying the inequality property of the squared Frobenius
norm to the squared Frobenius norm terms in (20), we obtain���off
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Using this inequality and expanding the remaining ����
���
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���,
(20) is approximately simplified to
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We note that the squared Frobenius norm of (21) is always
less than that of (20) due to the squared Frobenius norm inequal-
ity. Therefore, Æ����

��
��� in (21) still obeys the principle of min-

imal disturbance. Following the above methodology, we similarly
obtain

Æ����� � ������
����������� ��������

����
�

(22)
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diag ������ ���� �������
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In order to control the rate of convergence, we introduce a
scaling factor �� to (12) and write

Æ���� � ��

�
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�
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Æ�
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�
(24)

where 
 � �� � � with � being an upper bound that still keeps
the squared Frobenius norm of Æ���� in accordance with the
minimal disturbance principle, Æ����

��
��� and Æ����� can be

obtained from their simplified forms in (21) and (23), respectively.
Comparing (24) with (9), we see that the NOP algorithm is

clearly the normalized version of the OP algorithm. Both algo-
rithms move in the same natural gradient descent direction but
NOP employs additional normalized terms achieved at the addi-
tional cost of ��� 	 ��� � multiplications.

4. NUMERICAL EXPERIMENTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

4

10
3

10
2

10
1

10
0

Sample index (n)

M
ea

n
 p

er
fo

rm
an

ce
 in

d
ex

NOP (µ=0.2)

NOP (µ=0.1)

NOP (µ=0.3)

OP (µ=0.005)

OP (µ=0.01)
OP (µ=0.02)

Normalized EASI (µ=0.1)
Normalized EASI (µ=0.01)

Fig. 1. Mean performance indices of the OP, NOP and normalized
EASI algorithms obtained from the mixtures of two stationary but
nonwhite source signals generated by AR(2) and AR(4) models.
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Fig. 2. Performance index of the OP, NOP and stochastic relative
gradient algorithm [4] obtained from the mixtures of two speech
signals. Examples of effect of gradient noise from (a) stochastic
relative gradient (� � 
�
�) and (b) OP (� � �).
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To evaluate the performance of the BSS algorithms, the close-
ness of� � ���� � ��� to�� is measured.

We employ the performance index [5] which is defined by PI=
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where max��� ��� is the maximum value for � � �� � � � . Accord-
ingly, smaller values of PI indicate better performance.

Fig. 1 shows the PI averaged over ��� independent trials for
two stationary but nonwhite source signals generated by autore-
gressive (AR) models of order two and four. For these signals,
algorithms that employ the nonstationarity property only such as
[6], [4], [7] when used with an estimate of the correlation matrix
are not applicable. We therefore compare the OP and NOP algo-
rithms, which are based on second-order statistics, with the nor-
malized equivariant adaptive source separation via independence
(EASI) algorithm [8], which is based on higher-order statistics.
All entries of the mixing matrix are drawn from a normally dis-
tributed random process. We set � to four and �� to ���� for both
OP and NOP. From Fig. 1, it is seen that both OP and NOP outper-
form the normalized EASI algorithm with the faster convergence
from NOP. This is due to the fact that the distinctive difference be-
tween AR source signals is their nonwhiteness property on which
OP and NOP rely rather than the probability density function of
source signals on which normalized EASI relies. For AR source
signals, their probability density functions can be slightly differ-
ent. After the algorithms converge, an effect of large � and 	� on
an increase in misadjustment of NOP and normalized EASI can be
seen in the figure. This suggests the need of a smaller step-size in
order to obtain satisfactory misadjustment.

In the next simulation, the OP, NOP algorithms, which em-
ploy both the nonstationarity and nonwhiteness properties, and the
stochastic relative gradient algorithm based on the maximum like-
lihood criterion [4], which employs the nonstationarity property
only, are compared. The source signals are speech signals.1 We set
� to ��


 for all algorithms, �� to ���� for OP and NOP, � to ���
for OP, 	� to ��� for NOP and � of the stochastic relative gradient
algorithm is shown in the figure. In Fig. 2, it is seen that, at � � �,
NOP outperforms OP because of the normalized terms. All results
from NOP except at � � � are better than the stochastic relative
gradient algorithm because of the use of the nonwhiteness prop-
erty in addition to the nonstationarity property. As � increases, the
performance of NOP improves. The stochastic relative gradient
and NOP algorithms give similar PI curve at � � � due to the fact
that only the nonstationarity property of speech signals is used. We
also see that the OP and the stochastic relative gradient algorithms
exhibit large dynamic PI due to the effect of large computed gra-
dient induced by the nonstationarity of speech signals and a large
step-size. This effect is mitigated in the NOP algorithm.

5. DISCUSSION AND CONCLUSIONS

We have presented a normalized version of the on-line processing
(OP) algorithm referred to as the normalized OP (NOP) algorithm
for blind signal separation. The similarity between the OP/NOP
and the well-known LMS/NLMS algorithms [2] is that the nor-
malized algorithms can be derived from the principle of minimal
disturbance and that the normalized terms are the terms that do
not involve the criterion of the original algorithms i.e. the esti-

1Available: http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/
benchmarks/Speech4.mat

mation error ��	� for LMS [2], off
�
��
���

�

�
and diag ��� �� for

OP, which, in fact, cannot be used as a normalized term since they
approach zero when the unknown moves close to the minimum.

Consider off
�
��
���

�

�
used as a criterion of OP. It turns out that the

normalized term of this criterion, i.e.
��������

�
�

���
�

�
, is dependent

on � whereas the normalized term of NLMS is independent of
the weight vector�. This can be explained by the fact that the cri-
terion used in NLMS is of the elements of� whereas, in NOP, the
criterion is of the quadratic elements of � – hence the normal-
ized term of NOP takes a form that is still dependent on � after
the first-order gradient differentiation. The use of squared Frobe-
nius norm of correlation matrix as a normalized term is given with-
out derivation in [6], [9], [7]. This normalized term when used in
NOP, although similar in some degree to NLMS in the sense that it
is independent of the unknown, i.e. �, does not mitigate the gra-
dient noise problem (see (19)) and destroys the desirable property
of having the unity upper bound on the scaling factor.

In conclusion, although derived from a different perspective,
we can also view NOP as an algorithm that employs the same nat-
ural gradient descent direction as OP but with adaptive step-size.
From this viewpoint, it can be said that NOP not only utilizes the
nonstationarity and the nonwhiteness properties but also exhibits
fast convergence and robustness by overcoming the gradient noise
problem. It is shown by numerical experiments that an improved
performance, when compared to its original version, is achieved
by the proposed normalized algorithm.
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