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ABSTRACT

In this paper, we present a technique for the blind separa-

tion of DS-CDMA signals received on an antenna array, for

a multi-path propagation scenario with Inter Symbol Inter-

ference. Our method relies on a new third-order tensor de-

composition, which is a generalization of the parallel factor

model. We start with the observation that the temporal, spa-

tial and spectral diversities give a third-order tensor structure

to the received data. This tensor is then decomposed in a sum

of contributions by means of an Alternating Least Squares al-

gorithm, where each contribution fully characterizes one user.

1. INTRODUCTION

Let us consider R users transmitting frames of J symbols at

the same time within the same bandwidth towards an array

of K antennas. We denote by I the spreading factor, i.e.

the CDMA code of each user is a vector of length I . In a

direct-path only propagation scenario, the assumption that the

channel is noiseless / memoryless leads to the following data

model:

yijk =
R∑

r=1

hirsjrakr, (1)

where yijk is the output of the kth antenna for chip i and sym-

bol j. The scalar akr is the gain between user r and antenna

element k, sjr is the j th symbol transmitted by user r and

hir , for varying i and fixed r, is the result of convolving the

spreading sequence of user r with the impulse response of its

propagation channel. For background material on algebraic

solutions to this problem, we refer to [1, 2]. In this article, we

focus on a more complex situation where multi-path propaga-

tion leads to Inter-Symbol-Interference (ISI). We also assume

that the reflections can both occur in the far and close fields

of the antenna array so that each path is characterized by its

own delay τp , angle of arrival θp and attenuation αp, where

p denotes the path index. Under these assumptions, our ob-

jective is to estimate the symbols transmitted by every user in

a blind way, without using any prior knowledge on the prop-

agation parameters. Our approach consists of collecting the

received data in a third-order tensor and to express this tensor

as a sum of R contributions by means of a new tensor decom-

position. In section 2 we will generalize the model (1) to the

propagation scenario that is under consideration. In section 3

we will introduce some multilinear algebra prerequisites. In

section 4, our new tensor decomposition is applied to the data

model introduced in section 2. In section 5 we propose an

algorithm to compute this decomposition and we analyze its

performance.

2. DATA MODEL

Let us start with a single source transmitting J symbols along

P paths towards K antennas. These paths can be considered

as channels with memory, leading to ISI, and are assumed to

be stationary over J symbols. Let L be the maximum chan-

nel length at the symbol rate, meaning that interference is oc-

curring over L symbols. The coefficients resulting from the

convolution between the channel impulse response for the pth

path and the spreading sequence of the user under considera-

tion are collected in a vector hp of size LI . So hp(i+(l−1)I)
is the coefficient of the overall impulse response correspond-

ing to the ith chip and the lth symbol. We denote by xp(i, j)
the ith chip of the signal received from the pth path during

the jth symbol period. We have:

xp(i, j) =
L∑

l=1

hp(i + (l − 1)I) sj−l+1 (2)

Let ak(θp) be the response of the kth antenna to the signal

coming from the pth path with an angle of arrival θp, where

we assume that the path loss is combined with the antenna

gain. The model defined in (2) then yields:

xp(i, j, k) = ak(θp)
L∑

l=1

hp(i + (l − 1)I) sj−l+1, (3)

where xp(i, j, k) denotes the ith chip of the jth symbol of the

signal received by the kth antenna. We now write the overall

V ­ 8251­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



received signal by summing the contributions of the P paths

and the R users:

yijk =
R∑

r=1

P∑

p=1

ak(θrp)
L∑

l=1

hrp(i + (l − 1)I) s
(r)
j−l+1, (4)

where yijk denotes the ith chip of the jth symbol of the signal

received by the kth antenna, and in which r, p and l are the

user, path and interfering symbol index respectively.

3. MULTILINEAR ALGEBRA PREREQUISITES

A quantity of which the elements are addressed by N indices

is an N th-order tensor or N -way array. Signal processing

based on multilinear algebra is discussed in [3].

Definition 1. (Mode-n product) The mode-1 product of a
third-order tensor Y ∈ C

L×M×N by a matrix A∈ C
I×L, de-

noted by Y ×1 A, is an (I × M × N )-tensor with elements
defined, for all index values, by

(Y ×1 A)imn =
L∑

l=1

ylmnail

Similarly, the mode-2 product by a matrix B∈ C
J×M and

the mode-3 product by C∈ C
K×N are the (L × J × N ) and

(L × M × K) tensors respectively, with elements defined by

(Y ×2 B)ljn =
M∑

m=1

ylmnbjm

(Y ×3 C)lmk =

N∑

n=1

ylmnckn

In this notation, the matrix product Y = U.S.VT takes

the form of Y = S ×1 U ×2 V.

Definition 2. (Rank-1 Tensor) Y ∈ RI×J×K is of rank-1
if its elements can be written as yijk = a(i)b(j)c(k), where
a ∈ C

I×1, b ∈ C
J×1 and c ∈ C

K×1.
This definition generalizes the definition of a rank-1 ma-

trix: A ∈ CI×J has rank 1 if A = a.bT .

Definition 3. (Tensor Rank) The rank of Y is defined as
the minimum number of rank-1 tensors that yield Y in a linear
combination.

4. TENSOR DECOMPOSITIONS

4.1. PARAFAC Decomposition

Parallel Factor Analysis (PARAFAC) was introduced by Harsh-

man in [4]. It is a powerful technique to decompose a rank-R
tensor in a linear combination of R rank-1 tensors. Let Y be

an (I × J × K) tensor, with elements denoted by yijk. The

PARAFAC decomposition of Y can be written as

yijk =
R∑

r=1

ar(i)br(j)cr(k), (5)

where ar, br, cr are the rth columns of matrices A ∈ C
I×R,

B ∈ C
J×R and C ∈ C

K×R respectively, and where i, j and

k denote the row index. It now appears that the model for a

memoryless channel (1) can be seen as a PARAFAC decom-

position of the observation tensor Y . Sidiropoulos was the

first to use this multilinear algebra technique in the context

of wireless communications [2]. The model that takes into

account multi-path and ISI (4) can be seen as a tensor decom-

position that is more general than PARAFAC. This technique

is a special case of Block Factor Analysis (BFA) [5].

4.2. Block Factor Analysis

We start with Eq. (2), in which xp(i, j) is considered as an

element of an I × J matrix X, resulting from the product of

an I × L matrix Hp and an L × J Toeplitz matrix ST :

S1

S0

S0 S1

S2

S2

SJ−1

SJ−1

SJ−L+1 SJ

SJ−L+1S2−L

L

ph (1+(L−1)I)

ph (I)

ph (1)

ph (LI)

L

I

J

TS

Hp

X   =

After incorporating the antenna array response we obtain

the tensor model for (3):

Xp = Hp ×2 S×3 ap, (6)

where Xp is an (I × J ×K) tensor that represents the contri-

bution of the pth path from a single user, and ap is a K × 1
vector that contains the antenna array response to the pth path.

Considering all P paths, the overall signal associated with the

user under consideration is given by:

X =
P∑

p=1

Xp =
P∑

p=1

Hp ×2 S ×3 ap (7)

This equation can be rewritten in a more compact way:

X = H×2 S×3 A, (8)

where H is an I × L × P tensor with each frontal slice equal

to one of the Hp matrices, S is the J × L Toeplitz source

matrix and A the K×P matrix that contains the set of vectors
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Fig. 1. Schematic representation of the BFM

ap. Finally, we consider R users transmitting at the same

time, each along P paths, so we obtain the following tensor

equivalent of (4):

Y =
R∑

r=1

Hr ×2 Sr ×3 Ar (9)

This Block Factor Model (BFM) is represented in Figure 1.

Each term of the sum contains the information related to one

particular user: the global channel is characterized by the ten-

sor Hr, the antenna array response is given by Ar and the J
transmitted symbols are collected in Sr.

4.3. Uniqueness of the GCD

If the BFM (9) is unique (up to some trivial indeterminacies),

then its computation allows for the separation of the different

user signals and the estimation of the transmitted sequences.

We call a property generic when it holds everywhere, except

for a set of Lebesgue measure 0. A generic condition for

uniqueness has been derived in [5]:

min

„—
J

L

�
, R

«
+min

„—
K

P

�
, R

«
+min

„—
I

max(L, P )

�
, R

«
≥ 2R+2,

(10)

if I > L + P − 2. If I ≤ L + P − 2, then some addi-

tional conditions apply. This result implies an upper bound

on the number of users that can be allowed at the same time.

The maximal number of simultaneous users correspond to the

maximal value R that satisfies (10).

5. COMPUTATION OF THE GCD

5.1. Algorithm

Given only Y , we want to estimate Hr, Sr and Ar for each

user. We present an Alternating Least Squares algorithm (ALS),

consisting of alternating conditional updates of these unknowns.

We denote by A and S the K×RP and J×RL matrices that

result from the concatenation of the R matrices Ar and Sr re-

spectively. We start the algorithm with random initialization

of all Hr and Sr.
1. First Step: Update of A.

We suppose S and each Hr known from previous iteration.

Consider the JI × K matrix representation of Y , defined

by [Y(JI×K)](j−1)J+i,k = yijk. This matrix can be consid-

ered as the result of row-wise concatenation of the J left-right

slices of Y . Note the order in which the entries are stacked,

with the left index (j here) varying more slowly than the right

one. We will adopt the same ordering convention below. We

then write (9) as Y =
∑R

r=1 Qr ×3 Ar where we define

Qr = Hr ×2 Sr as an (I × J × P ) tensor. In matrix for-

mat we get Y(JI×K) =
∑R

r=1 Q
(JI×P )
r AT

r , such that (9)

can be rewritten as :

Y(JI×K) = Q.AT , (11)

where Q is the JI×RP matrix resulting from the concatena-

tion of the matrices Q
(JI×P )
r . Finally we obtain an expression

for the least squares update of A:

Â = (Y(JI×K))T (QT )†, (12)

where † denotes the pseudo-inverse.

2. Second Step: Update of S.

We suppose A and each Hr known. In order to preserve the

Toeplitz structure, we will update the generator vector of each

Sr instead of Sr itself. Equation (9) can also be written as

Y =
∑R

r=1 Gr ×2 Sr, where Gr = Hr ×3 Ar. Let sr be

the (J + L − 1) × 1 generator vector of the Toeplitz ma-

trix corresponding to the rth user: sr = [s2−L ... s1 ...sJ ]T .

Front-back slices of Y and Gr are I × J and I × L matrices

obtained by keeping index k fixed and are respectively writ-

ten as Yk and Gr,k. We build the following JI× (J +L−1)
matrix Mr,k from Gr,k:

I0

I0

rk[G   ]
:,L rk[G   ]

:,1
...

rk[G   ]
:,L rk[G   ]

:,1 I0

I0

rk[G   ]
:,1I0 rk[G   ]

:,L

I0

I0
M r =k ... ...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

...

...

...

... ...

...

...

...

...

...,

where [Gr,k]:,l denotes the lth column of Gr,k and 0I is an

I × 1 vector of zeros.

Let us denote by Vec the operator that writes a matrix A ∈
C

I×R in vector format by concatenation of the columns such

that A(i, r) = [Vec(A)]i+(r−1)I . For index k fixed, we get:

Vec(Yk) =
∑R

r=1 Mr,ksr , with Vec(Yk) of size JI × 1.

Taking into account all k, we obtain:

Y (KJI×1) =
R∑

r=1

Mrsr, (13)

where Mr results from row-wise concatenation of all Mr,k

and Y (KJI×1) from row-wise concatenation of all Vec(Yk).
Equation (13) can itself be written as a single matrix mul-

tiplication:

Y (KJI×1) = Ms, (14)

where M is a KJI×R(J+L−1) matrix obtained by column

wise concatenation of all Mr and s is an R(J+L−1)×1 vec-

tor resulting from row-wise concatenation of the R generator
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vectors. A least squares update of s can be computed from

(14). Then we rebuild each Sr from the generator vectors.

3. Third Step: Update of each Hr

Now we suppose A and S known. Top-bottom slices of Y and

Hr, i.e. K×J and P ×L matrices obtained by keeping index

i fixed, are written as Yi and Hr,i respectively. For index i

fixed, (9) leads to: Vec(Yi) =
∑R

r=1(Sr ⊗ Ar)Vec(Hr,i),
in which ⊗ denotes the Kronecker product. Now, Vec(Yi)
and Vec(Hr,i) can be interpreted as the ith column vectors of

matrices Y(JK×I) and H
(LP×I)
r respectively, so that we ob-

tain Y(JK×I) =
∑R

r=1(Sr⊗Ar)H
(LP×I)
r from the previous

equation. Finally, (9) can be written as:

Y(JK×I) = ZH(RLP×I), (15)

where Z = [S1⊗A1, ...,SR⊗AR] is a JK×RLP matrix and

H(RLP×I) results from the concatenation of all H
(LP×I)
r .

Eq. (15) gives the least squares update of H(RLP×I). Then

the entries of Ĥ(RLP×I) are stacked in R tensors Hr.

We finally build an ALS-type algorithm for the computa-

tion of the BFM (9) from these three update rules. We denote

by Y(n) the tensor built at the nth iteration from the R up-

dated factors H(n)
r , Ŝ

(n)
r and Â

(n)
r and we define the follow-

ing function: c(n) = ‖Y (n) − Y(n−1)‖.

Summary of the algorithm:
1- Initialize randomly each Hr and Sr

2- Update A from (12): Â = (Y(JI×K))T (QT )†

3- Update S from (14): ŝ = M†Y (KJI×1)

4- Update Hr from (15): Ĥ(RLP×I) = (Z)†Y(JK×I)

5- Repeat from 2 until c(n) < ε (e.g. ε = 10−5)

5.2. Results of simulations

We illustrate the performance of our algorithm in presence of

additive white Gaussian noise, so that equation (9) becomes:

Yobs = Y + N , where Yobs is the tensor of observations,

Y is the tensor that contains the data to be estimated and N
contains noise with variable variance. The following simula-

tion consists of 400 Monte-Carlo runs with spreading codes

of length I = 4, a short frame of J = 30 QPSK-symbols,

K = 6 antennas, L = 2 interfering symbols, P = 2 paths

per user and R = 3 users, which means that we are on the

uniqueness bound defined in (10).

The curves in Figure 2 show the accuracy of the BFM

(blind receiver) in terms of Symbol Error Rate (SER), and

that of the MMSE (minimum mean-square error) estimator,

which assumes perfect knowledge of the channel (tensors Hr

known) and the antenna array response (matrices Ar known).

We also plot the performance of two semi-blind techniques

(either Hr or Ar known). It turns out that the performance of

the BFM receiver is close to the MMSE (the gap between the

2 curves is only 4 dB). Moreover, the gap between the BFM-

curve and the curve for the semi-blind receiver that knows
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Fig. 2. Performance of the BFM receiver

the antennas response is only 2dB. For scenarios where the

uniqueness bound defined in (10) is not reached, we have

found an even better precision, with a gap between the BFM

and MMSE curve that does not exceed 2dB.

6. CONCLUSION

In this paper, we have shown how Block Factor Analysis of a

third-order tensor leads to a powerful blind receiver for multi-

user access in wireless communications, with performance

close to the MMSE receiver. The tensor model takes both

ISI and multi-path propagation aspects into account, which

was not the case for the blind PARAFAC receiver in [2]. Our

method can also be applied to other systems where three di-

versities are available (e.g. temporal oversampling instead of

code diversity).
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