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ABSTRACT

We present an algorithm for the separation of multiple speakers from

mixed single-channel recordings by latent variable decomposition of

the speech spectrogram. We model each magnitude spectral vector
in the short-time Fourier transform of a speech signal as the outcome

of a discrete random process that generates frequency bin indices.

The distribution of the process is modeled as a mixture of multino-

mial distributions, such that the mixture weights of the component
multinomials vary from analysis window to analysis window. The

component multinomials are assumed to be speaker specific and are

learned from training signals for each speaker. We model the prior

distribution of the mixture weights for each speaker as a Dirichlet
distribution. The distributions representing magnitude spectral vec-

tors for the mixed signal are decomposed into mixtures of the multi-

nomials for all component speakers. The frequency distribution i.e

the spectrum for each speaker is reconstructed from this decomposi-
tion.

1. INTRODUCTION

The problem of monaural speaker separation, i.e. the problem of sep-
arating concurrent speakers1 from a mixture of speakers in a monau-

ral recording has historically been approached from the angle of fre-

quency selection. To separate the signal for any speaker, the time-

frequency components of the mixed signals that are dominated by
the speaker are reconstructed from the resulting incomplete time-

frequency representation. The actual selection of time-frequency

components for any speaker may be based on perceptual principles

(e.g. [1]) or on statistical models (e.g. [2]) and may be either binary

or probabilistic (e.g. [3]).
In this paper, we follow an alternate approach that attempts to

construct entire spectra for each of the speakers, rather than par-

tial spectral descriptions. Typically, in this approach, characteristic

spectro-temporal structures, or “bases”, are learned for the individ-
ual speakers from training data. Mixed signals are decomposed into

linear combinations of these learned bases. Signals for individual

speakers are separated by recombining their bases with appropriate

weights. Jang et al [4] derive the bases for speakers through indepen-
dent component analysis of their signals. Smaragdis [5] derives them

through non-negative matrix factorization of their magnitude spec-

tra. Others have derived bases through vector quantization, Gaussian

mixture models, etc.
The algorithm presented in this paper identifies typical spec-

tral structures for speakers through latent-variable decomposition of

their magnitude spectra. The latent-variable model for speaker sep-

aration, originally proposed by Raj et al [6], assumes that spectral
vectors of speech are the outcomes of a discrete random process that

generates frequency bin indices. Each analysis window (frame) of

1The term speaker here refers to a person speaking, i.e. a talker

the speech signal represents several draws from this process. The

magnitude spectrum for the frame represents a scaled histogram of

the draws. The distribution of the random process itself is mod-
eled as a mixture multinomial distribution. The mixture weights are

assumed to vary from frame to frame while the component multino-

mials, which are speaker specific, are assumed to be fixed across all

frames.

In this framework, the component multinomials may be inter-

preted as the fundamental modes, or bases that a speaker is able to

generate. The spectral magnitude of any analysis window is a (noisy)
linear combination of these bases. In the original formulation Raj et

al. [6] all linear combinations are assumed equally likely a priori,
i.e. any valid set of mixture weights is as likely as any other set. In

this paper we recognize that speakers have biases: they favor some
sounds over others. We capture this bias through an a priori proba-

bility on the mixture weights, that we model by a Dirichlet density.

The weights with which component multinomials are combined in

any analysis frame are themselves drawn from this density. The pa-

rameters of the multinomials and the Dirichlet density are learned
from unmixed signals for each speaker using the EM algorithm. The

algorithm is thus a supervised one, since the identities of the speak-

ers and the parameters of their distributions must be known.

The spectrum of a mixed signal is modeled as the outcome of

repeated draws from a two-level random process. Within each draw,

the process first draws a speaker from the mixture, then a specific
multinomial for the speaker, and finally a frequency index from the

multinomial. To separate the spectrum for each speaker within each

analysis frame we obtain maximum a posteriori estimates of the

mixture weights for each speaker, given the a priori probability dis-

tribution on the weights and the speaker-specific multinomial com-
ponent distribution that were learned from training data. The sepa-

rated spectrum for the speaker within the frame is finally obtained as

the expected value of the number of draws of each frequency index

from the mixture multinomial distribution for the speaker.

The rest of the paper is organized as follows: In section 2, we

briefly describe the latent Dirichlet variable model for magnitude
spectra. In section 3, we describe the algorithms for learning multi-

nomial component distributions for speakers and for separation of

mixed signals. In section 4, we present some experimental results.

Finally in section 5, we discuss the results and possible extensions

of this work.

2. THE LATENT DIRICHLET VARIABLE MODEL

At the outset it is assumed that all speech signals are converted to

sequences of magnitude spectral vectors (simply referred to as spec-

tral vectors henceforth) through a short-time Fourier transform. The

term “frequency” in the subsequent discussion actually refers to the
frequencies represented in these spectral vectors.
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The latent Dirichlet variable model is a generative probabilistic

model that is an adaptation of latent Dirichlet allocation [7].

Case 1 Case 2

Speaker 2

Speaker 1

(a) (b) (c)

Fig. 1. Illustration of the latent Dirichlet variable model simplex. A
Triangle denotes a simplex where each corner represents one of the

component multinomials and each point within the simplex repre-

sents the mixture multinomial model for the spectrum of one frame

of speech. (a) and (b) shows the case of two speakers whose sim-
plexes are similar while the distributions are different. (c) shows the

model for a mixed signal where each inner triangle corresponds to

the simplex of a different speaker and the outer polygon represents

the distribution of the mixed signal.

The model assumes that each spectral vector of a speech signal

is the result of several draws from a discrete random process that

generates frequency bin indices. The generative process for each
spectral vector can be described as follows:

• Let θ be a K-dimensional Dirichlet random variable that takes
values in the (K−1) simplex (a k-vector θ lies in the (k−1)

simplex if θi ≥ 0,
Pk

i=1
θi = 1) and has the following prob-

ability density

p(θ|α) =
Γ(

PK

i=1
αi)QK

i=1
Γ(αi)

θ
α1−1

i . . . θ
αK−1

K (1)

where the parameter α is a K-vector with components αi >

0 and Γ(.) is the Gamma function. Generate an observation
of θ.

• Generate several draws from a mixture multinomial whose

mixture weights are defined by θ:

– Let z be a variable that takes values {1, 2, . . . K}. Gen-
erate a value of z from the probability distribution de-

fined by the vector θ, i.e.

p(z = k) = θk (2)

– Let β be a K × F matrix describing frequency prob-

abilities, where F is the number of discrete frequen-

cies in the FFT. The ij-th element of the matrix βij is

the probability of drawing frequency j when the hidden
variable z takes the value i, i.e.

βij = p(f = j|z = i) (3)

Generate a value of the frequency using the multino-
mial distribution given by the k-th row of β, where k is

the value of z generated in the previous step.

Thus, the overall mixture multinomial distribution model for a
given frame of speech can be written as

p(f) =

KX

k=1

θ
s
kβ

s
kf (4)

where θs has a prior Dirichlet distribution with parameter vector αs.

The superscript s indicates that the terms are specific to the speaker.

Equation 4 represents a multinomial distribution whose param-
eters lie entirely within a simplex, the corners of which lie at com-

ponent multinomials that form the rows of β. This is illustrated by

figure 1(a): each corner of the triangle represents one of the compo-

nent multinomials, and each point within the simplex represents the
mixture multinomial model for the spectrum of one frame of speech.

Both the simplex and the distribution of points within it are specific

to a speaker. In particular, the distribution of points in the simplex

can distinguish speakers even when their simplexes are very similar:
talkers tend to have a bias towards uttering certain kinds of sounds

and this shows up in the scatter of points in the simplex. This is illus-

trated by figure 1(b) which shows the simplex for a different speaker

. This simplex is identical to the one in figure 1(a), except for the

scatter of points within it. The latent-variable model of Raj et al.
[6] ignores the distribution of points within the simplex and cannot

distinguish between two figures. The Dirichlet variable model pro-

posed in this paper, on the other hand, models the distribution of

points within the simplex by the Dirichlet distribution over θ and is
thus able to distinguish between the two cases.

The latent Dirichlet variable model for the spectrum of a mixed
speech signal has an additional level in the hierarchy. A fraction of

the spectral content in each frequency is derived from each speaker.
Hence, an initial latent variable s first selects a speaker and then a

frequency is selected according the generative model for that partic-

ular speaker. The overall distribution for the spectral vector is given

by

p(f) =
X

s

p(s)
KX

k=1

θ
s
kβ

s
kf (5)

where p(s) is the a priori probability of the s-th speaker.

Figure 1(c) illustrates the model for the spectrum of a mixed

speech signal. Each triangle represents the simplex for a different

speaker (shown by distinct colors). The outer simplex shows the dis-

tribution for the mixed signal. A mixed spectrum is represented by a
point within this outer simplex, e.g. the blue dot in the figure. This is

a linear combination of two points, one lying within the simplex for

each speaker (illustrated by the dotted line and the dots the end of the

line in the figure). The goal of the separation is to identify the ends
of the line, given that the line is of unit length. This is aided greatly

by knowing the a priori distribution of points within the simplexes

of the speakers.

3. SINGLE CHANNEL SPEAKER SEPARATION

The algorithm comprises a learning stage where the component multi-
nomial distributions for speakers are learned, and a separation stage

where the learned parameters are used to separate speech.

3.1. Learning the parameters for speakers

In the learning stage, the multinomial distributions βs and the Dirich-

let parameter vector αs are learned for each speaker from a set of

training recordings for the speaker. Let Of,t represent the value of

the f -th frequency band in the t-th spectral vector. Let θk,t represent
the value of θk that has been estimated for the t-th spectral vector.

Since the spectra are assumed to be histograms in the model, every

spectral component must be an integer. To account for this, we as-

sume that the observed spectrum is in fact a scaled version of the
histogram. However, the unknown scaling factor does not affect the
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analysis since it is factored equally into the numerator and denomi-

nator terms of equations 7 and 8.

The terms of equation 4 are initialized randomly and re-estimated
through iterations of the following equations, which are derived through

the expectation maximization algorithm:

pt(z|f) =
θz,tβ

s
zfP

z′ θz′,tβ
s
z′f

(6)

β
s
zf =

P
t
pt(z|f)Of,tP

t

P
f ′ pt(z|f)Of ′,t

(7)

θz,t =

P
f

pt(z|f)Of,tP
z′

P
f

pt(z′|f)Of,t

(8)

The θ values that have been estimated for all time frames are then

used to estimate the Dirichlet parameter vector α for the speaker.
The maximum likelihood estimate of a Dirichlet distribution is not

available in closed form. Hence, we use iterative methods (a fixed-

point iteration or Newton-Raphson iteration) to obtain an estimate of

α, see [8] for a detailed description. Figure 2 shows a few examples
of typical βs

zf distributions learned for a female and a male speaker.
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Fig. 2. The three histograms to the left show typical component

multinomial distributions obtained for a female speaker. The his-

tograms to the right show typical multinomials for a male speaker.

3.2. Separating speakers from mixed signals

The process of separating the spectra of speakers from a mixed signal

has two stages. The parameters pt(s) and θs
z,t for the t-th analysis

frame are estimated by iterations of the following equations, derived

using EM algorithm:

pt(s, z|f) =
pt(s)θ

s
z,tβ

s
zfP

s′
pt(s′)

PK

k=1
θs′

k,tβ
s′

kf

(9)

pt(s) =

PK

k=1

P
f

pt(s, k|f)Of,t

P
s′

PK

k=1

P
f pt(s′, k|f)Of,t

(10)

θ
s
z,t =

P
f

pt(s, z|f)Of,tC + αs
z − 1

PK

k=1
(
P

f
pt(s, k|f)Of,tC + αs

k − 1)
(11)

Notice the presence of an unknown scaling factor C in equation 11.

We empirically find a value of C so that the value of the first term

pt(s, z|f)Of,tC is balanced by the value of (αs
z − 1) and neither

term dominates the answer.

Once all terms have been estimated, the mixture multinomial

distribution for the s-th speaker in the t-th analysis frame is obtained

as

pt(f |s) =
KX

k=1

θ
s
k,tβ

s
kf (12)

According to the model, the total number of draws of any frequency

is the sum of the draws from the distributions for the individual

speakers, i.e.

Of,t =
X

s

Of,t(s) (13)

where Of,t(s) is the number of draws of f from the s-th speaker.

The expected value of Of,t(s), given the total count Of,t is hence

given by

Ôf,t = E[Of,t(s)] =
pt(s)pt(f |s)Of,tP

s′
pt(s′)pt(f |s′)

(14)

Ôf,t(s) is the estimated value of the f -th component of the spec-

trum of the s-th speaker in the t-th frame. The set of Ôf,t(s) values
for all values of f and t are composed into a complete sequence of

spectral vectors for the speaker. The phase of the short-term Fourier

transform of the mixed signal is combined with the reconstructed

spectrum and an inverse Fourier transform performed to obtain the
time-domain signal for the speaker.

4. EXPERIMENTAL EVALUATION

Mixture Mixture

Reconstructed Sample 1 Reconstructed Sample 2

Original Sample 1 Original Sample 2

Fig. 3. Example of the output of the separation algorithm. Both

speakers uttered the same sequence of words in this example. Spec-

trograms on the left column correspond to a female speaker while
the ones on the right correspond to a male speaker (top row shows

the mixture).

Experiments were conducted to evaluate the speaker separation

performance of the proposed algorithm on synthetic mixtures of sig-
nals from a male speaker and a female speaker. A set of 5 utterances
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from the TIMIT database comprising approximately 15 seconds of

speech was used as training data for each speaker. All signals were

normalized to 0 mean and unit variance to ensure uniformity of sig-
nal level. Signals were analyzed in 64 ms windows with 32 ms over-

lap between windows. Spectral vectors were modeled by a mixture

of 100 multinomial distributions. Thus, a set of 100 multinomial

distributions were learned from the training data for each speaker.

Mixed signals were obtained by digitally adding test signals for

both speakers. The length of the mixed signal was set to the shorter

of the two signals. The component signals were all normalized to 0

mean and unit variance prior to addition, resulting in mixed signals

with 0dB SNR for each speaker. The mixed signals were separated
using the method outlined in section 3.2. We empirically chose the

value of the unknown scaling factor for equation 11 to be 10000.

Figure 3 shows an example of spectrograms of separated signals

obtained for the speakers. The spectrograms of the original signals,
the mixed signal and both separated signals are shown. It can be

seen from the figure that considerable separation has been achieved

for both speakers. Examples of separated signals can be obtained at

http://cns.bu.edu/∼mvss/courses/speechseg/.

It is difficult to obtain unambiguous objective measurements of
performance for speaker separation algorithms. The primary prob-

lem is that the power in many components of the reconstructed spec-

tra for a speaker is lesser than that in the spectrum of the unmixed

signal, leading to negative noise estimates. As a result, several equally
unsatisfactory metrics have been proposed. Reyes et al. compute the

SNR from only those components where the primary speaker domi-

nates. This however leads to unrealistic SNR estimates. Smaragdis

[5] computes a cross correlation between the unmixed and recon-

structed signals; however this metric leaves much of the energy in
the signal unaccounted for. Raj et al. [6] impose the phase of the

unmixed signal on the separated spectrogram and compute the SNR

from the complex spectrum. Unfortunately, the SNR estimates are

often not meaningful due to the phase distortion introduced by the
procedure. Nevertheless, we have attempted to obtain an objective

measurement of the separation performance achieved by our algo-

rithm. We report two metrics: the first is the cross covariance be-

tween the magnitude spectrum of the original unmixed signal and
the separated spectrum for a speaker. The better the separation,

the higher this number will be. Unfortunately, the cross-covariance

tends to be very high even for the mixed signal, and this metric is

not very informative. As an alternative, we have also reported the
(equally ineffective) SNR measurements obtained with the SNR es-

timator of Raj et al.

The table in figure 4 shows the SNR improvement from the mix-

ture to the reconstructed signal and the values of cross covariance

between the magnitude spectrum of the original unmixed signal and
the spectrum of the mixture/reconstructed signal. The values are for

five samples that are available on the website. There is an improve-

ment in all cases for the female speaker with an average of 0.0520

while there is average improvement of 0.0022 in the case of the male
speaker. We emphasize again that these numbers are not indicative

of the perceptual strength of the separation. Ultimately, the only

true method for evaluating separation performance is a subjective

test. Subjective tests reveal that the separated signals obtained with
our techniques consistently have higher levels of the desired speaker

than in the mixture, particularly for the male speaker.

5. OBSERVATIONS AND CONCLUSIONS

The proposed speaker separation algorithm is observed to be able
to extract separated signals with significantly reduced levels of the

Female Speaker Male Speaker

Mixed Recons- SNR Mixed Recons- SNR

sample tructed change sample tructed change

0.7779 0.8341 2.5 dB 0.7878 0.7991 0.3 dB

0.7367 0.7751 2.8 dB 0.7683 0.7528 -0.2 dB
0.7481 0.8130 2.7 dB 0.7816 0.8018 1.2 dB

0.7374 0.7914 2.8 dB 0.7894 0.7888 1.2 dB

0.7365 0.7832 3.0 dB 0.7498 0.7457 -1.6 dB

Fig. 4. Normalized cross-covariance with the magnitude spectra of

unmixed samples and the SNR improvement.

competing speaker. In addition, the algorithm has several advan-
tages over most state-of-art techniques. It only requires very small

amounts of training data - for the experiments reported in this paper

only 15 seconds of training data were used per speaker. Addition-

ally, the computational requirements for separation are minor - the

separation of a mixture of 2 speakers can be done in real time on a
standard laptop.

There are many avenues for further improvement in performance.

The current model only employs simple Dirichlet densities as priors.

Improvements can be gained by having more detailed models such
as mixture Dirichlet densities. Temporal dependence between adja-

cent frames, which are currently being ignored, may be incorporated

by using Markovian priors on θ. We expect to address several of

these issues in future papers.
We conclude that simplicity of our algorithm, novelty of the ap-

proach and the scope for improvements makes it a very interesting

method worthy of further research.
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