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ABSTRACT 

A new method, employing machine learning techniques and a 
modified low frequency envelope spectrum estimator, for 
estimating important room acoustic parameters including 
Reverberation Time (RT) and Early Decay Time (EDT) from 
received music signals has been developed.  It overcomes 
drawbacks found in applying music signals directly to the envelope 
spectrum detector developed for the estimation of RT from speech 
signals. The octave band music signal is first separated into sub 
bands corresponding to notes on the equal temperament scale and 
the level of each note normalised before applying an envelope 
spectrum detector.  A typical artificial neural network is then 
trained to map these envelope spectra onto RT or EDT.  Significant 
improvements in estimation accuracy were found and further 
investigations confirmed that the non-stationary nature of music 
envelopes is a major technical challenge hindering accurate 
parameter extraction from music and the proposed method to some 
extent circumvents the difficulty. 

1. INTRODUCTION 

The performance of an acoustic space is often quantified using a 
set of acoustic parameters, which are known to be reasonably 
correlated to important aspects of human perception.  For example, 
the Reverberation Time (RT) is the time taken for a sound to decay 
from a steady state condition by 60dB. Early Decay Time (EDT), 
on the other hand, is six times the time it takes for a sound to decay 
by 10dB and is often used as it is better correlated with subject 
reverberance [10].  Standard measurement of these parameters 
involves excitation of the space with artificial signals; the nature 
and level of these signals makes occupied measurement 
problematic and this prompts the use of naturalistic signals such as 
speech or music to facilitate occupied measurement.   
 The envelope spectrum of running speech [12] can be 
used as an indicator of the level of reverberation and background 
noise in an enclosure.  A classic measure of the effect of the room 
on the envelope is the Modulation Transfer Function (MTF) [13], 
defined by the level of sinusoidal modulation transferred to a 
receiver from a single sinusoid modulating a noise source. 

Reverberation smoothes the envelope of signals and this 
smoothing effect is similar to a low-pass filtering operation 
dependent on the decay time of the room.  Machine intelligence 

function mapping methods can utilise the low frequency speech 
envelope spectrum to recognises the key features of the MTF and 
from there estimate an accurate RT value [1].  The bandwidth of 
speech limits RT estimation to mid-range frequency bands and the 
measurement is limited to spaces used for speech such as lecture 
theatres.  This has inspired the use of music signals which often 
have a broader range of excitation frequencies and are used in 
other spaces such as concert halls.  This paper discusses the 
application of artificial intelligence methods to the extraction room 
acoustic parameters from music signals. 

A music envelope is highly non-stationary due to 
intensity and tonal fluctuations.  The Complex Modulation 
Transfer Function (CMTF) is defined by the impulse response of 
the room [3] and can be estimated from music signals using the 
anechoic and reverberant envelopes with a local stationary 
hypothesis that removes low frequency fluctuations [2].  

Pilot studies with music signals show that sufficient 
parameter accuracy cannot be achieved using the octave band 
envelope spectrum.  Other pilot studies have shown that utilising 
the empirical CMTF [2] as pre-processor for music yields only a 
small improvement in EDT and RT estimation accuracy over the 
octave band envelope spectrum detector.  It is proposed that this 
low estimation accuracy from music signals is related to the uneven 
response across the octave.  Western music is based on the equal 
temperament scale.  Therefore, the music signal power is focused 
in discrete narrow frequency bands, each related to a note from the 
equal temperament scale. The result is a lack of signal excitation 
between notes and an uneven response caused by bias to particular 
notes in a piece (major/minor etc).  This response causes uneven 
excitation of the room response.  Variation in decay shape for each 
of the corresponding note bands in the impulse means the effect on 
envelope doesn’t accurately represent the whole octave band MTF 
which is used in parameter calculation. 

It is proposed that to compensate for the unevenness of 
the octave spectrum, assuming the level of excitation in the 
impulse is constant across the band being analysed, the following 
method is employed:  The signal is first separated into 12 narrow 
frequency bands spaced according to the equal temperament scale.  
Each note envelope is extracted and normalised to the average 
intensity of that note.  By adding together each note envelope 
before detecting the spectrum, the effect of the MTF is now 
independent of individual note level. 

A large database of realistic room responses is required 
to teach the system.  Previously stochastically generated impulse 
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responses have been used but in recent decades, there have been 
significant advances in the modeling of rooms using geometric 
modeling techniques. A commercial package with a proven track 
record that utilises Randomized Tail-Corrected Cone-Tracing 
(RTCC) is used to generate the required number of training and 
validation examples [11]. This paper starts by introducing the pre-
processor and training regime in section 2.  Section 3 details 
experimental results, further investigation and analysis.  Section 4 
summarises the findings and further directions. 

2. THE PROPOSED METHOD 

The function mapping algorithm, in this case an artificial neural 
network (ANN - section 2.3), is trained to recognise acoustic 
parameters from reverberated signals from various simulated 
environments in Fig 1.  

Fig. 1:  System Overview 

The anechoic signal was convolved with each impulse 
and then passed through the envelope spectrum pre-processor 
(section 2.2).  The EDT and RT parameters were calculated from 
the impulses (section 2.1) and collected together with the 
associated envelope spectra.  The data was split into two groups, a 
training set and a validation set.  The training data was used to 
teach the ANN to map acoustic parameter to associated envelope 
spectrum.  The trained ANN was validated with envelope spectra 
from the validation set to determine its accuracy. 

Two geometrically random room models were used; a 
box shaped room and a fan shaped design.  Each model had a 
variable source position on stage and an audience area with 
variable population density. The receiver grid was spread over the 
audience area.  The model generation routine was given limits for 
room dimensions, aspect ratios and material properties; these have 
been used to generate 3,208 impulse responses so far, 50 % from 
each room model. 

2.1. EDT and RT  

This paper considers the 1 kHz octave band EDT and RT. This is 
calculated by first filtering the impulse and then applying 
backwards integration [5].  RT is calculated by fitting a straight 
line with a least mean square approximation to the decay from -
5dB to -35dB and extrapolating the decay time to -60 dB.  EDT is 
calculated in the same manner but only the first 10dB of decay is 
used.  Fig 2 shows the difference caused by non-diffuse early 

reflections in the EDT and RT measures; notice the difference in 
the decay shape for the two limits.

Fig. 2:  EDT and RT calculation; the new room model 

2.2. Modified Pre-processor 

The pre-processor is a modified version of the speech envelope 
spectrum detector [1] [12].  The reverberant signal is passed 
though a 12 band BP filter bank where the filter centre frequencies 
are determined by the equal temperament scale, starting at f#5 
(≈740 Hz) in the 1 kHz octave band. 

Fig. 3:  Modified Pre-processor 

All of the note filters are 1/12
th octave in bandwidth 

except for the first and last which are limited so that they are within 
the 1 kHz octave band thus preventing leakage from adjacent 
bands.  A Hilbert envelope detector is used with a LP filter at 80 
Hz and the envelope resampled at 160 Hz.  Welch’s power spectral 
density estimation with 50% overlap and 10s Hanning data 
windows were used to extract the envelope spectra.  The music 
signals used were all over 2 minutes long.  Each note envelope is 
normalised to its average level so that the envelope spectrum gives 
a value of 0 dB when a sine wave with amplitude equal to the 
average level of one note envelope is applied to the spectrum 
detector.  Normalisation has three important consequences: 

1.   Envelope spectrum is independent of signal level  
2.   Effects of noise and reverberation are now separate. 
3.   Effect of MTF is independent of note levels 
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2.3. The ANN 

Although any function mapping routine could be used, the ANN 
has a proven track record with regard to this work.  Therefore, an 
ANN with a 40-30-10-1 structure was used using a bipolar sigmoid 
activation function of the form. 

( )bxwy += tanh (1) 

w - neuron weight, b - bias value, y - output and x - input 

The scaled conjugate gradient learning method was used 
which offers an order of magnitude increase in learning time over 
back propagation [6].  Student’s t-test is performed on with 
training and validation error sets to detect signs of over-fitting.  
3208 rooms were generated, ¾ of these were randomly selected as 
the training set and the rest as the validation set.  The network size 
was determined in an ad hoc manner. 

The reverberant parameter will ultimately be used to gauge 
predicted subjective performance, therefore the required accuracy 
of the system is defined by the smallest perceivable change.  The 
difference limen (DL) is a term used to describe the smallest 
perceivable difference for something.  The DL for RT on music 
signals is around 5% above 0.6s but increases below 0.6s to about 
12% [6][7].  There is limited information on the EDT DL so the 
validation criteria for the required accuracy is set at ±5% but with a 
minimum error of ±0.1s as having accuracy better than this is not 
required.  The accuracy in this paper is reported as being the 
percentage that lies within these limits. 

2.4. Data separability and the Mahalanobis distance

A repeatable measure of data separability is defined based on the 
Mahalanobis distance [9] between two groups of data.   Dµ is 
defined as the average Mahalanobis distance between a series of 
adjacent (in decay time) groups of envelope spectra.  A group size 
of 0.5s is used so that the group size is large enough for a reliable 
covariance matrix estimate.   
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Where µ1 and µ2 are the mean vectors of the 2 groups and C1,2
-1 is 

the inverse covariance matrix; it is assumed that as group spacing 
is decreased, Dµ will decrease in a uniform manner.  Dµ shows 
excellent correlation with the system validity (% valid) and is a 
non-computational intensive repeatable measure of overall data 
separability used in this paper to quantify data separability without 
relying on inconsistent ANN results.   

3. RESULTS TESTING AND ANALYSIS 

3.1. Speech and the updated room model 

One minute thirty seconds of running anechoic speech was applied 
to the system described in section 1, except, the full octave band 
envelope pre-processor was used [1] instead of the modified pre-
processor so that the effect of the more complex room model could 
be documented.  After training the function mapping system on the 
envelope spectra, the accuracy of extraction for both the RT and 

EDT is compared.  RTCC represents the new room model, model 1 
describes exponentially damped Gaussian noise impulse model and 
model 2 is a stochastic impulse model with time dependent 
reflection density.  The % valid in the validation set after training 
for each case is shown in Fig 4. 

Percentage valid Acoustic 
Parameter RTCC model 1 model 2 

EDT 94 % 99 % 95 % 

RT 53 % 95 % 99 % 

Fig. 4:  Performance of speech  

Satisfactory results (>95%) were achieved for models 1 
and 2 for both EDT and RT.  However, using the RTCC room 
model, it can be seen that EDT extraction is significantly more 
accurate.  This is due to non-diffuse early reflections; in the same 
room differing EDT and RT times are common which causes 
increased problem complexity.  Additionally, the envelope 
responds to the MTF unevenly; modulation frequencies where late 
reflections have more influence than early ones (RT is a low 
modulation frequency effect) may not be present or be particularly 
low in magnitude.  This is analogous in the time domain to the 
masking of late reflections by utterances with early reflections.

3.2. Spectral unevenness of music – effect on the octave band 
envelope method and results from the modified pre-processor 

A number of music signals were generated, each with the 
same envelope but with differing frequency responses.  To do this, 
music was generated from the same rhythm sequence where all 12 
notes in an octave were sounded but had a different combination of 
note levels for each test signal.  The normalised variance of the 
power spectrum across the octave band was compared with the data 
Dµ separability of the music envelope spectrum when convolved 
with the room response database. 
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Fig. 5: Increasing spectral variance and data separability 

Fig. 5 shows that an increase in the spectral unevenness 
causes a decrease in the separability of the envelope spectra with 
respect to decay time and hence a decrease in accuracy of 
parameter extraction.  Music exhibits discrete narrow-band 
excitation, therefore, the impulse response is only excited in these 
bands.  Across an octave band the room response can vary, this 
produces an envelope spectrum estimate that is not representative 
of the broadband MTF.  Due to this variation of room response 
across the octave band, similar envelope shapes exist for different 
EDT values.  The uneven frequency response in music is due to the 
lack of excitation between notes and the uneven response of the 
notes particular to the piece of music.  The modified pre-processor 
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is applied to music and compared with the octave-band pre-
processor.  EDT estimation accuracy is plotted in Fig 6. 
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Fig. 6:  Performance of music 

A big increase in the accuracy of the system is seen when applying 
the modified pre-processor. This shows that by equalising the 
response of each note envelope in the overall envelope, the effect 
of the full octave band MTF is more accurately depicted in the 
envelope spectra.  This method assumes that the impulse response 
magnitude is uniform across the octave band.  Further 
improvement may be achieved by using the anechoic signal to 
normalise the envelopes or by improving the equalisation method. 

3.3. Envelope Structure of music 

Pilot studies show the CMTF pre-processor, which takes into 
account the non-stationary nature of the music envelope, yields a 
small increase in EDT estimation accuracy compared with the 
octave band envelope spectrum method.  This improvement may 
indicate methods for improving the modified pre-processor.  
Therefore, the effect of the music envelope’s non-stationary nature 
on the parameter estimation accuracy using the octave band 
envelope spectrum method is investigated. 

An octave band music envelope is used to modulate 
white noise.  The same envelope is used to design a filter [4] to 
apply to a random Gaussian process to produce a random signal 
with the same power spectrum as the music envelope.  This signal 
is then also used to modulate white noise.  Using the octave band 
envelope detector, both produce identical envelope spectra.  Eight 
tracks of anechoic music and one of speech were used to generate 
the test signals.  For each signal an ANN was trained using the 
octave band envelope spectra for different rooms.  Training was 
carried out multiple times to get a stable validation error. 
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Fig. 7: Difference in accuracy due to non-stationarity 

There is a statistically significant difference (5% level) between the 
validation error of stationary and non-stationary envelopes.  Whilst 
the magnitude of the difference (≈4%) is small, it may be useful in 
improving the accuracy of the modified pre-processor.  

4. CONCLUSIONS 
This paper has proposed a method that compensates for the uneven 
spectra of music stimuli by applying a pre-processor that 
normalises the level of each note on the equal temperament scale 

before detecting the envelope spectra. This enables room acoustic 
parameters including RT and EDT to be reliably extracted from 
received music signals. Empirical results show large improvement 
in EDT estimation accuracy.  Results also reconfirm that the highly 
non-stationary nature of the music envelope degrades the 
performance of the system but methods such as the local stationary 
hypothesis may be avenues towards further improvement.  This 
paper also shows that the increased complexity of the room model 
reduces the estimation accuracy.  However, the statistical test for 
over fitting described in this paper indicates that by increasing the 
number of example impulses, the validation accuracy may also be 
increased.  Future work will focus on improving the spectral 
equalisation method, methods compensating for envelope non-
stationarity and new algorithms combining the note envelope 
extraction method with the maximum likelihood estimation method 
for RT [14]. 
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